Frege's Begriffsschrift is Indeed First-order Complete

 

It is widely taken that the first-order part of Frege's Begriffsschrift is complete. However, there does not seem to have been a formal verification of this received claim. The general concern is that Frege's system is one axiom short in the first-order predicate calculus comparing to, by now, standard first-order theory. Yet Frege has one extra inference rule in his system. Then the question is whether Frege's first-order calculus is still deductively sufficient as far as first-order completeness is concerned. In this short note we confirm that the missing axiom is derivable from his stated axioms and inference rules, and hence the logic system in the Begriffsschrift is indeed first-order complete.

 

History and Philosophy of Logic, 2017
DOI | PDF

 

PublicationsYang Liu