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CHAPTER I

Subjective Expected Utility

Let us now try to find a method of measuring beliefs as bases of
possible actions …. The old-established way of measuring a person’s
belief is to propose a bet, and see what are the lowest odds which
he will accept.

—— Ramsey (1926)

1. Introduction

1.1. Degrees of belief and betting method. The opening quote is from
Frank Ramsey’s celebrated essay Truth and Probability (1926) where Ramsey
proposed a theory of personal probability and utility. The theory contained basic
ideas which were later developed or rediscovered in, most notably, the works of
de Finetti, von Neumann and Morgenstern, Savage, Anscombe and Aumann,
among others. Ramsey’s subjectivism introduced a novel idea of measuring at
the same time decision maker’s subjective utilities and probabilities, where the
agent’s personal probability was portrayed as “the logic of partial beliefs” which
was given an operational definition through coherent betting behavior. Let us
highlight some basic ideas of Ramsey’s theory.1

Let X be a set of prizes and, to simplify matters, let x∗ and x∗ represent
respectively the best and the worst prizes considered by the decision maker.2 In
order to get a precise measure of her subjective valuations of the prizes in X, the
decision maker is presented with the following betting situation which involves
an ethically neutral proposition p:

i. x∗ if p; x∗ if ¬p
ii. x∗ if ¬p; x∗ if p

where (i) and (ii) can be seen as two lottery tickets with the redeeming policy
that if, say, ticket (i) is chosen and p is indeed true then the agent will be
rewarded with x∗, x∗ if p is false. According to Ramsey, a proposition p is said
to be ethically neutral “if two possible worlds differing only in regard to the truth
of p are always of equal value” (cf. Ramsey, 1926, p.73). In other words, the

1Ramsey’s paper was first read at the “Moral Sciences Club” at University of Cambridge in
1926 and published posthumously in The Foundations of Mathematics and other Logical Essays
(1931), edited by Richard Braithwaite. It also appears in a collection of Ramsey’s writings
edited by Mellor, D. H., Philosophical Papers, Cambridge University Press, 1990.
2Note that Ramsey’s original theory does not postulate the existence of these two distinguished
prizes (in fact, any two distinctive prizes would do). We introduce x∗ and x∗ purely for
illustrative purposes, which will be used in later expositions.

1



2 I. SUBJECTIVE EXPECTED UTILITY

truth (or the falsity) of p itself has no added value in evaluating the value of a
bet. As we shall see, this assumption is a forerunner of the state independent
axiom adopted in various decision models which will be discussed later.

Now, under the above betting setup, if the decision maker is indifferent
between (i) and (ii), then it is said that the agent has 1/2 degree of belief in p

being true. Ramsey then postulates in the form of an axiom that there exists
an ethically neutral proposition p believed to degree 1/2. This distinguished
proposition p (with 1/2 degree of belief) can be further used to evaluate the
values of other prizes in X. Consider the following bets

iii. x

iv. x∗ if p; x∗ if ¬p.

If the agent is indifferent between the two bets, then the value of x said to be
equal to half of the total value of x∗ and x∗. To represent numerically, let the
utility of x∗ be 1 and x∗ be 0, in symbols u(x∗) = 1 and u(x∗) = 0. According to
Ramsey, the fact that the decision maker’s is indifferent between the two tickets
implies that her evaluation of the utility of x is the midpoint of the utility scale
from 0 to 1:

1

u(x∗)
1/2

u(x)
0

u(x∗)

It is further assumed that the above procedure can be repeated indefinitely, that
is, for instance, there exists some prize x′ whose utility halves the way from x∗

to x with u(x′) = 1/4, and so on. Hence, under this assumption, the utility
scale between x∗ and x∗ can be calibrated to arbitrary precision. Then, for any
y ∈ X, y can be assigned with a numerical utility representation u(y) on the
utility scale.

1

u(x∗) · · ·
1/2

u(x) · · ·
1/4

u(x′) · · ·
0

u(x∗)

With subjective utilities for all prizes in hand, Ramsey proceeds to define what
it means to say that the agent believes in the truth of an arbitrary proposition
q to certain degree using the following betting mechanism. For any q, if there
exist prizes x, y, z ∈ X with u(y) ≥ u(x) ≥ u(z) such that the agent is indifferent
between the following bets

v. x

vi. y if q; z if ¬q

then her partial belief in q, denoted by µ(q), is defined as

µ(q) =
u(x)− u(z)

u(y)− u(z)
, u(y)− u(z) > 0.

Using a “Dutch-book argument” Ramsey shows that if the agent’s partial belief
assignments are coherent, in the sense that no book can be made against her,



1. INTRODUCTION 3

then µ obeys the laws of probability calculus (cf. Ramsey, 1926, p. 79).3 We will
not go further into the Dutch-book argument here which is a topic on its own,
for further discussion see, for instance, Earman (1992, Ch.2), Hájek (2008). Our
focus is rather to see how probabilities and utilities are derived in various formal
systems.

1.2. Expected utility theory. Ramsey’s essay marked the beginning of
a series of extensive studies in utility theory. In this and the next chapter we
explore three main representation theorems. Here is a quick preview. (The
readers may ignore the technical details upon first reading.)

vNM: Let X be a finite set of prizes/consequences, and LX be the set of
probability measures on X. Each p ∈ LX is referred to as a lottery on
X, the intended interpretation is that, for any prize x ∈ X, p(x) is the
probability of getting x. Let ≿ be a preference relation on LX , the von
Neumann-Morgenstern (vNM) expected utility theory states that
if ≿ satisfies certain postulated axioms then it can be presented by a
utility function (EUF) U : LX 7→ R such that

p ≿ q ⇐⇒ U(p) ≥ U(q),

where U can be expected utilities, that is, there exists a subjective
utility function u : X 7→ R for which

p ≿ q ⇐⇒
∑
x∈X

p(x)u(x) ≥
∑
x∈X

q(x)u(x),

and u is unique up to a positive linear transformation. We further
extend this result to the case where X may contain infinitely many
consequences and each p ∈ LX is simple (i.e., has finite support).

A-A: Let S be a finite set of states of the world. Define a horse-race
lottery to be a function h mapping from S to LX . Denote the space
of horse race lotteries by H. Then given any horse lottery h and state
s ∈ S, h(s) is a (vNM) lottery defined on X, we also write hs for h(s).
Hence, for any prize x ∈ X, hs(x) is the probability that x is obtained
in state s given the horse lottery h. An Anscombe-Aumann (A-A)
representation of a preference relation ≿ on H is that there exists a
utility function u : X 7→ R and a (subjective) probability measure µ on
an algebra of S such that, for any h, h′ ∈ H,

h ≿ h′ ⇐⇒
∑
s∈S

µ(s)
∑
x∈X

hs(x)u(x) ≥
∑
s∈S

µ(s)
∑
x∈X

h′s(x)u(x)

provided that ≿ satisfies a set of postulated axioms.
SVG: Further, let S be an (uncountably) infinite set of states and F be

some algebra equipped on S, X be a set of consequences, and let A be

3For more detailed discussions/expositions on Ramsey’s account, see Fishburn (1981, §5.1),
Bradley (2001). .



4 I. SUBJECTIVE EXPECTED UTILITY

Table 1.1. Models of Expected Utility.

≿ defined on subjective
utility

subjective
probability

objective
probability

Ramsey Aa ✓ ✓ –b
vNM LX ✓ – ✓
A-A H ✓ ✓ ✓
SVG A ✓ ✓ –
a Ramsey uses “propositions” instead of states and events and his preferences are

defined for consequences, acts, and conditional acts.
b Strictly speaking there is no objective probability explicitly employed in Ramsey’s

model, yet it is easily seen that his notion of ethically neutral propositions with
1/2 degrees of belief, which is based on an apparent symmetry consideration, play
a similar role as some chance mechanism.

the set of functions mapping from F to X, each f ∈ A is referred to
as an act. Then a Savage representation of the preference ordering ≿
on A is that, under postulated axioms on ≿, there exists a (subjective)
probability measure µ on (S,F) and a real-valued utility function u on
X such that, for any f, g ∈ A,

f ≿ g ⇐⇒
∫
S
u
[
f(s)

]
dµ ≥

∫
S
u
[
g(s)

]
dµ.

Remark. 1. The decision-theoretic models listed here are not presented in
chronicle order: the Anscombe-Aumann model appeared after the first edition
of Savage’s Foundations of Statistics. The materials presented here are orga-
nized based on the methodological approach they each adopts with increasing
computational complexity.

2. In the three decision models above, the respective preference relations are
defined on different sets of alternatives (see Table 1.1 for a comparison). To
simplify notations, we adopt a systematic ambiguity and use, unless otherwise
specified, the same notation “≿” for all preference relations and let the context
determine on which set of alternatives a preference relation is defined.

1.3. Kinds of probability. In the discussions below, we pay close atten-
tion to different kinds of probability involved, by which we are referring to the
(rough) distinction between objective and subjective probabilities. These proba-
bilities may appear either as measures (subjective probability) of decision maker’s
personal probabilistic judgments over the occurrences of some events or in the
form of some presupposed chance mechanism (objective probability).

“Probability has often been visualized as a subjective concept
more or less in the nature of an estimation. Since we propose
to use it in constructing an individual, numerical estimation of
utility, the above view of probability would not serve our pur-
pose. The simplest procedure is, therefore, to insist upon the
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alternative, perfectly well founded interpretation of probability
as frequency in the long run.” (von Neumann and Morgenstern,
1944, p. 19)

The quotation is from von Neumann and Morgenstern’s well-known book “The
Theory of Games and Economic Behavior,” where they made a distinction be-
tween two different kinds of probabilities. As we shall see, the use of objective
probabilities is crucial to the vNM model and the A-A model, where the de-
cision maker’s personal utilities and subjective probability (in the case of the
A-A model) are essentially defined in terms of objective chances. Savage, on the
other hand, adopted a purely subjective interpretation of probability upholding
that subjective utility can be integrated with respect to subjective probability.
The tradeoff is that Savage’s theory is considerably more complicated than other
models.

The plan for this chapter is as follows. In Section 2 and Section 3, we recon-
struct the decision models developed in von Neumann and Morgenstern (1944)
and Anscombe and Aumann (1963). The expositions owe much to Fishburn
(1970, 1981, 1986, 1994); Hammond (1998a,b); Kreps (1988); Mehta (1998); Ok
(2007, 2011); Rubinstein (2007), to name just a few. Full mathematical details
of the theories discussed in this chapter can be found in the works just cited,
our primary goal is to trace the methodological developments that are related
to Savage’s theory of subjective expected utility, which will be the main theme
of the next chapter.

2. von Neumann-Morgenstern Utility Functions

2.1. Lotteries. As mentioned above, a lottery on a finite set X is a proba-
bility function p on X, we sometimes refer to p as a von Neumann-Morganstern
(vNM) lottery. The intended interpretation is that X is a set of prizes and p(x)

is the chance that x ∈ X obtains. Let LX be the set of all probability functions
on X.4 In simple cases, define the degenerate lottery with respect to a given
x ∈ X to be the probability function δx ∈ LX such that, for any y ∈ X,

δx(y) =

1 y = x

0 y ̸= x
. (2.1)

That is, δx assigns probability 1 to x, 0 otherwise. Hence, it is trivial that each
prize x ∈ X can be identified with a lottery δx that degenerates at x. Then, it
is easily seen that, for any lottery p ∈ LX , p can be written as a combination of
δx’s,

p =
∑
x∈X

p(x)δx. (2.2)

4LX is often written as ∆(X), namely the space of probability functions defined on X.
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b(1,0,0) b (0,0,1)

b
(0,1,0)

b
p

p2

p1

p3

Figure 2.1. 2-Simplex with unit altitude.

Example 2.1. Suppose that X = {x1, x2, x3}. Write the degenerate lottery
δx1 in the form of a triple (1, 0, 0) which says that δx1 assigns probability 1 to
prize x1 and 0 to both x2 and x3. Then LX can be represented geometrically by a
2-simplex in Figure 2.1 where each vertex of the equilateral triangle corresponds
to a degenerate lottery.5 Note that since in an equilateral triangle the sum of the
perpendiculars from any internal point p to three sides equals its altitude (say, 1),
write any point p in the triangle in the form of (p1, p2, p3) where each coordinate
pi is the length of the perpendicular from p to the edge that is on the opposite
side of vertex i, then p1 + p2 + p3 = 1. Thus, Figure 2.1 in a representation of
the lotteries in LX where each point p = (p1, p2, p3) corresponds to a lottery in
LX with pi being the probability that p assigns to xi. �

Definition 2.2. Let p, q ∈ LX , a compound lottery of p and q with scalar
λ ∈ [0, 1] is a function r such that r(x) = λp(x) + (1 − λ)q(x) for all x ∈ X.
Denote the compound lottery r by the following notation,

p⊕λ q := λp(x) + (1− λ)q(x). (2.3)

Intuitively, given any p, q ∈ LX , a compound lottery p⊕λ q can be considered
as a (second-order) lottery ticket which has the payment policy that, with known
chance λ, lottery p will transpire and, with probability (1−λ), lottery q obtains.

λ 1− λ

p⊕λ q p q
(2.4)

It is easy to see that p⊕λ q ∈ LX , that is, every (second-order) compound lottery
is in effect equivalent to a (first-order) lottery in LX . To characterize this concept
geometrically using the simplicial representation of Example 2.1, we have that
the point that represents the compound lottery p⊕λ q (0 ≤ λ ≤ 1) in Figure 2.2
falls on the line segment that joins p and q.

2.1.1. Preference over lotteries. Presumably, the decision maker has prefer-
ences over the prizes. It is assumed that these preferences are reflected in her
preferences over the lotteries with each lottery specifying the chances of getting

5Strictly speaking, a standard n-simplex is a unit n+1-dimensional polygon in Rn+1, Figure 2.1
is a special case where the 2-simplex is represented as a space of its own in R2.



2. VON NEUMANN-MORGENSTERN UTILITY FUNCTIONS 7

bcq

bcp

bp⊕λ q

δx1

δx2

δx3

Figure 2.2. Compound lottery p⊕λ q in 2-simplex.

these prizes.6 For instance, in Example 2.1, suppose that the agent definitely
prefers prize x1 over other two prizes then it must be that she prefers δx1 to δx2 or
δx3 , because, by definition, lottery δxi assigns 1 to obtaining price xi (i = 1, 2, 3).
Formally, let ≿ be a preorder on LX (see Appendix A1), which represents the
decision maker’s preferences over all the lotteries. The following are the von
Neumann-Morgenstern postulates on ≿:7

vNM 1. ≿ is a complete preference relation.

vNM 2. For all p, q, r ∈ LX and any λ ∈ (0, 1],

p ≻ q ⇐⇒ p⊕λ r ≻ q ⊕λ r.

vNM 3. For any p, q, r ∈ LX , there exist a, b ∈ (0, 1), such that

p ≻ r ≻ q =⇒ p⊕a q ≻ r ≻ p⊕b q.

vNM 1 is often referred to as the completeness axiom which asserts that all
lotteries are pair-wisely comparable. This axiom is often defended along the lines
that the decision maker, if pressed, will eventually make a decision between a
given pair of options regardless what her deliberation process might be. Note
that given the agent’s ordering among lotteries one can induce an ordering ≿∗

over the prizes through degenerate lotteries as follows: for all x, y ∈ X,

x ≿∗ y =Df δx ≿ δy. (2.5)

That is, prize x is said to be weakly preferred to prize y, if, under the initial
ordering ≿, the degenerate lottery δx is at least as good as the lottery that
degenerates at y. It is easily seen that if ≿ is totally (or partially) ordered so is
≿∗.8

6See von Neumann and Morgenstern (1964, §3.3.1) for their discussions on the relation between
probablistic reasonings and utility considerations.
7See Hammond (1998a, §3) for a discussion on different versions of the independence and
the continuity axioms adopted in the literature. The current system (vNM 1-3) is provably
equivalent to the theory presented there due to Jensen (1967) (see conditions (O), (I), (C), and
Lemma 4.5(a), see also Fishburn (1977, 1981, 1982)).
8This preference relation among prizes induced through degenerate lotteries can be seen as
a precursor of Savage’s similar notion of preferences over consequences which is induced via
the notion of constant acts defined in Definition 5.3. However, unlike degenerate lotteries the
notion of constant acts is highly problematic, we shall address this issue later.
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vNM 2 is commonly known as the independence axiom. To explain in terms
of compound lotteries, the axiom says that decision maker’s (strict) preference
between two lotteries remains the same when each is combined with the same
lottery (with respect to the same scalar). To illustrate, observe that the com-
pound lotteries in (2.6) are so arranged that they agree with one another on
(1 − λ), then vNM 2 mandates that the preference between the two combined
lotteries is solely determined on the part where they are different, i.e., on λ.
This postulate is closely related to (or, perhaps, motivates) Savage’s well known
sure-thing principle which will be examined in §5.2.

λ 1− λ

p⊕λ r p r

q ⊕λ r q r

(2.6)

vNM 3 is sometimes called the Archimedean or continuity axiom. Intuitively,
it says that no lottery p (q) is so good (bad) that, for any r ≻ q (p ≻ r), the
compound lottery of p and q is always better (worse) than r. Variants of vNM
axioms are widely adopted in utility theory as they provide some basic charac-
terization of the underlying preferential structure which mimics the behavior of
the standard ordering ≥ on the real line. The latter paves the way for the even-
tual real-valued numerical utility representation of ≿. The following properties
can be derived from the axioms.

Lemma 2.3. For any p, q, r ∈ LX and λ ∈ (0, 1],

(1) p ∼ q if and only if p ∼ p⊕λ q;
(2) p ≿ q if and only if p ≿ p⊕λ q ≿ q;
(3) for any 0 ≤ β < α ≤ 1, p ≻ q if and only if p⊕α q ≻ p⊕β q;
(4) if p ≿ r ≿ q and p ≻ q, then there exists a unique α ∈ [0, 1] such that

r ∼ p⊕α q.

Proof. (1) Suppose, to the contrary, that p ≻ p ⊕λ q. Write p as p ⊕λ p,
then we have p ⊕λ p ≻ p ⊕λ q. The latter implies, via vNM 2, p ≻ q, a
contradiction. Hence p ⊕λ q ≿ p by vNM 1. Similarly, it can be shown
p ≿ p⊕λ q. Thus p ∼ p⊕λ q.

(2) Suppose, to the contrary, that q ≻ p⊕λ q, that is, q⊕λ q ≻ p⊕λ q. It follows,
by vNM 2, that q ≻ p, a contradiction. It can be similarly shown that it is
not the case that p⊕λ q ≻ p. Thus, by vNM 1, p ≿ p⊕λ q ≿ q.

(3) If β = 0, then, by vNM 2, p ≻ q implies p ⊕α q ≻ q ⊕α q = q = p ⊕β q. If
0 < β < α ≤ 1, then 1− β/α ∈ (0, 1), by vNM 2, p⊕α q ≻ q implies that

p⊕α q = (p⊕α q)⊕
1− β

α
(p⊕α q)

≻ q ⊕
1− β

α
(p⊕α q)

=
(
1− β

α

)
q +

β

α

[
αp+ (1− α)q

]
= βp+ (1− β)q = p⊕β q.
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(4) The claim is trivially true if r ∼ p or r ∼ q, in which cases α = 1 or 0,
respectively. We prove the case where p ≻ r ≻ q. Consider the sets

A : =
{
x ∈ [0, 1]

∣∣ p⊕x q ≿ r
}
;

B : =
{
x ∈ [0, 1]

∣∣ r ≿ p⊕x q
}
.

Let α∗ = inf A and α∗ = supB. Note that, for any a > α∗, there must exist
some a′ ∈ A such that a > a′ ≥ α∗ (for, otherwise, a is a lower bound of
A that is greater than α∗, which contradicts the assumption α∗ = inf A),
hence, by claim (3) above, p⊕a q ≻ p⊕a′ q ≿ r. It follows, via vNM 1, that

a > α∗ =⇒ a /∈ B. (2.7)

The contrapositive of (2.7) says that, for any a, a ∈ B implies that α∗ ≥ a,
in other words, α∗ is an upper bound of B. and hence α∗ ≥ α∗. Similarly,
one can show that, for any a,

α∗ > a =⇒ a /∈ A (2.8)

which leads to α∗ ≥ α∗. Now define α = α∗ = α∗. The proof is completed if
we can show that α ∈ A ∩ B. Suppose, to the contrary, that α /∈ B, then,
by vNM 1, p⊕α q ≻ r. It follows, by vNM 3 and the assumption r ≻ q, that
there exists some a ∈ (0, 1) such that (p⊕α q)⊕a q ≻ r, that is, p⊕a·α q ≻ r.

This implies that a · α ∈ A. However, from α∗ = α > a · α we get, via (2.8),
that a · α /∈ A, a contradiction. Hence we have α ∈ B. Similarly, one can
show α ∈ A. Uniqueness can be easily derived from (2.7) and (2.8). □

Remark 2.4. Note that vNM 3 can also be derived from Lemma 2.3(4) under
vNM 1 and vNM 2. To see this, let p, q, r be such that p ≻ r ≻ q, we show that
there exist a, b ∈ (0, 1), such that p ⊕a q ≻ r ≻ p ⊕b q. By Lemma 2.3(4) there
exists a unique c ∈ (0, 1) for which r ∼ p⊕c q. Then let a be any number in (c, 1)

and b be any number in (0, c), then, by Lemma 2.3(3) (which is derivable from
under vNM 1 and vNM 2), we are done. Thus vNM 3 is provably equivalent to
Lemma 2.3(4) given vNM 1 and vNM 2. For this reason, we can use vNM 3 and
Lemma 2.3(4) interchangeably as the continuity axiom of vNM theory.

2.2. Cardinal utility. Given the assumption that X is finite, it follows, by
vNM 1, that the set of degenerate lotteries {δx | x ∈ X} has a ≿-maximal and
a ≿-minimal element, that is, there exist a most desired prize x∗ and a least
desired prize x∗ in X such that

δx∗ ≿ δx ≿ δx∗ , for all x ∈ X. (2.9)

The following lemma shows that δx∗ and δx∗ are in fact extreme points for all
lotteries in LX under ≿.

Lemma 2.5. There exist x∗, x∗ ∈ X such that δx∗ ≿ p ≿ δx∗ for all p ∈ LX .
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Proof. Let δx∗ and δx∗ be defined as in (2.9). Consider the non-trivial case
where δx∗ ≻ δx∗ . Note that, for any p ∈ LX , p can be rewritten as

∑
x∈X p(x)δx

via (2.2). Then, by Lemma 2.3(4), for each δx, let λx ∈ [0, 1] be such that
δx ∼ δx∗ ⊕λx δx∗ , hence, by vNM 2,

p =
∑
x∈X

p(x)δx ∼
∑
x∈X

p(x)
(
δx∗ ⊕λx δx∗

)
=
∑
x∈X

p(x)λxδx∗ +
[
1−

∑
x∈X

p(x)λx

]
δx∗ .

(2.10)

Since δx∗ ≻ δx∗ and 0 ≤
∑

x∈X p(x)λx ≤ 1, then, by Lemma 2.3(2),

δx∗ ≿
∑
x∈X

p(x)λxδx∗ +
[
1−

∑
x∈X

p(x)λx

]
δx∗ ∼ p.

Similarly, it can be shown that p ≿ δx∗ . □
Let us now proceed with the main theorem of this section.

Theorem 2.6 (von Neumann-Morgenstern). Let X be a nonempty finite
set, and ≿ be a preference relation on LX . Then ≿ satisfies vNM 1-3 if and only
if there exists a function u ∈ RX such that

p ≿ q iff
∑
x∈X

p(x)u(x) ≥
∑
x∈X

q(x)u(x), (2.11)

where u is unique up to a positive linear transformation, that is, for any function
v ∈ RX , v satisfies (2.11) if and only if, for some a > 0 and b,

u(x) = av(x) + b. (2.12)

Proof. We only prove the non-trivial “only if” direction of the theorem in
following steps:
(1) By Lemma 2.5, there exist x∗, x∗ ∈ X such that δx∗ ≿ p ≿ δx∗ for all p ∈ LX .

If δx∗ ∼ δx∗ then p ∼ q for all p, q ∈ LX . In this case, let u be any constant
function. Otherwise, δx∗ ≻ δx∗ , define function U : LX 7→ [0, 1] as follows,

U(p) := inf
{
α ∈ [0, 1]

∣∣ δx∗ ⊕α δx∗ ≿ p
}
.

By Lemma 2.3(3),

p ≿ q if and only if U(p) ≥ U(q) for all p, q ∈ LX ; (2.13)

and by Lemma 2.3(4),

p ∼ δx∗ ⊕λ δx∗ if and only if λ = U(p). (2.14)

(2) We show that U is an affine function on LX , that is, for any sequences
λ1, . . . , λn ∈ [0, 1] with

∑
i λi = 1 and for any p1, . . . , pn ∈ LX , we have

U(λ1p1 + · · ·+ λnpn) = λ1U(p1) + · · ·+ λnU(pn). (2.15)

It suffices to show, for any p, q ∈ LX and λ ∈ [0, 1], that

U
(
λp+ (1− λ)q

)
= λU(p) + (1− λ)U(q). (2.16)
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Note that, by (2.14), p ∼ δx∗ ⊕U(p) δx∗ and q ∼ δx∗ ⊕U(q) δx∗ . Let r =

λp+ (1− λ)q. Then, by vNM 2 (twice),

δx∗ ⊕U(r) δx∗ ∼ r = λp+ (1− λ)q

∼ λ
(
δx∗ ⊕U(p) δx∗

)
+ (1− λ)

(
δx∗ ⊕U(p) δx∗

)
= δx∗ ⊕λU(p)+(1−λ)U(q) δx∗ .

It follows that U(r) = λU(p) + (1− λ)U(q) via (2.14).
(3) Now, for any p, q ∈ LX , by (2.13) and (2.2),

p ≿ q if and only if U
(∑

x∈X
p(x)δx

)
≥ U

(∑
y∈X

q(y)δy

)
Then, by (2.15),

p ≿ q if and only if
∑
x∈X

p(x)U(δx) ≥
∑
y∈X

q(y)U(δy).

Define u : X 7→ R to be such that u(x) = U(δx), we have that

p ≿ q if and only if
∑
x∈X

p(x)u(x) ≥
∑
y∈X

q(y)u(y).

(4) Finally, we show that u is unique up to a positive linear transformation,
we prove only the nontrivial “only if” direction of the proof. As before, let
x∗, x∗ ∈ X be such that δx∗ ≿ δx ≿ δx∗ for all x ∈ X. Further, let a, b be
such that

u(x∗) = av(x∗) + b, u(x∗) = av(x∗) + b,

where a > 0 (the existence of such a, b is guaranteed by the hypothesis
δx∗ ≻ δx∗ in part (1)). By (2.14), for any x ∈ X, there exists a number λ for
which δx ∼ δx∗ ⊕λ δx∗ , then we have that

u(x) = λu(x∗) + (1− λ)u(x∗)

= λ
[
av(x∗) + b

]
+ (1− λ)

[
av(x∗) + b

]
= a

[
λv(x∗) + (1− λ)v(x∗)

]
+ b = av(x) + b.

This completes the proof of the theorem. □

We refer to the derived function u above as an instance of von Neumann-
Morgenstern utility function (vNMUF). A pair of vNMUFs u and v are said
to be cardinally equivalent if (2.12) is satisfied. The following corollary is a
generalization of Theorem 2.6, which will become handy later. The proof uses
the same techniques as that of Theorem 2.6, and hence omitted.

Corollary 2.7. Let X,LX be as above, and let C be any convex subset
of LX . Suppose that ≿ is a preference relation on C such that there is an ≿-
maximum and an ≿-minimum in C. Then ≿ satisfies vNM 1-3 if and only if
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there exists a (utility function) u ∈ RX such that

p ≿ q iff
∑
x∈X

p(x)u(x) ≥
∑
x∈X

q(x)u(x). (2.17)

where u is unique up to a positive linear transformation.

2.3. Expected utility for simple lotteries. We now extend the von Neu-
mann and Morgenstern Expected Utility Theorem 2.6 to a class of lotteries de-
fined for some X that contains potentially infinitely many prizes.

Definition 2.8. Let X be an infinite set of prizes/consequences, a prob-
ability measure p on X is said to be simple if it has a finite support, that is,
if ∣∣supp(p)

∣∣ = ∣∣{x ∈ X : p(x) > 0
}∣∣ < ∞. (2.18)

Denote by L∗
X the set of all simple probabilities on X, and we refer to L∗

X as
an extended space of lotteries. The notational difference between LX and L∗

X is
that LX contains all the probability measures defined on a finite X, whereas, for
any p ∈ L∗

X , p is defined on some infinite X but with finite support. Clearly, for
any λ ∈ [0, 1] and any simple probabilities p, q, the mixture of p and q, written
p⊕λ q, is in L∗

X . And for any p ∈ L∗
X , p can be written as the sum of degenerate

lotteries that support p, an analogue of (2.2):

p =
∑

x∈supp(p)
p(x)δx. (2.19)

Then a similar argument for Lemma 2.5 leads to the following observation.

Lemma 2.9. If there exist a ≿-maximal element x∗ and a ≿-minimal element
x∗ in X then, for each p ∈ L∗

X , δx∗ ≿ p ≿ δx∗ .

Theorem 2.10. Let ≿ be a preference relation on L∗
X . Then ≿ satisfies

vNM 1-3 if and only if there exists a vNMUF u ∈ RX such that

p ≿ q iff
∑
x∈X

p(x)u(x) ≥
∑
y∈X

q(y)u(y), (2.20)

where u is unique up to a positive linear transformation.

Proof of Theorem 2.10. We prove by modifying step (1)-(4) in the proof
of Theorem 2.6 with (1∗)-(4∗) to account for the added assumption that X is
infinite and that each p ∈ L∗

X is a simple probability measure. We only show the
modified steps (1∗) and (3∗), namely the steps where the assumption of X being
infinite plays a role. Steps (2∗) and (4∗) hold with obvious notational changes.

(1∗) If for any p, q ∈ L∗
X , p ∼ q, then let u be any constant function, then

we are done. Otherwise, fix any p, q satisfying p ≻ q. By vNM 1, for
any r ∈ L∗

X , exactly one of the following cases holds:
(i) p ≿ r ≿ q, (ii) r ≻ p, (iii) q ≻ r.
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For case (i), define function U : L∗
X 7→ [0, 1] as follows,

U(r) := inf
{
α ∈ [0, 1]

∣∣ p⊕α q ≿ r
}
.

Then, by Lemma 2.3(4), r ∼ p ⊕λ q if and only if λ = U(r). It follows
that U(p) = 1 and U(q) = 0. For any r in case (ii), by Lemma 2.3(4),
let a be such that p ∼ r⊕a q, define U(r) = 1/a. Similarly, for any r in
case (iii), let a be such that q ∼ p⊕a r, define U(r) = a/(a− 1). Thus,
by Lemma 2.3(3), we have that U is a numerical representation of ≿:

p ≿ q if and only if U(p) ≥ U(q) for all p, q ∈ L∗
X . (2.21)

(3∗) Define u : X → R by

u(x) = U(δx) for all x ∈ X. (2.22)

Then, for any p, q ∈ L∗
X , a modified step (2∗) together with (2.19)-(2.21)

yield that

p ≿ q ⇐⇒ U

( ∑
x∈supp(p)

p(x)δx

)
≥ U

( ∑
y∈supp(q)

q(y)δy

)

⇐⇒
∑

x∈supp(p)
p(x)U(δx) ≥

∑
y∈supp(q)

q(y)U(δy)

⇐⇒
∑
x∈X

p(x)u(x) ≥
∑
y∈X

q(y)u(y).

This completes the proof of the theorem. □

Remark 2.11. Note that all the probability functions (either in LX or in L∗
X)

considered in this section are simple (have finite support). The theorems proved
above hold regardless of whether these probabilities are finitely or countably
additive. This ceases to be true if probability functions defined over X are not
simple: different constraints with different additivity conditions need to be added
in order for the representation theorem to hold. See Fishburn (1970, Chapter 8)
and Fishburn (1982, Chapter 3) for an extensive discussion for these cases.

3. Horse-race Lotteries

3.1. Risk versus uncertainty. In the von Neumann and Morgenstern ex-
pected utility model, the decision maker is uncertain as to which outcome/prize
will transpire, where the uncertainty is associated with some objective chances
attached to the outcomes. For instance, in a gambling situation, the gambler
is uncertain about the outcome of the spin of a roulette wheel, where the bet-
ting on each possible outcome comes with a known risk (objective probability),
and hence the vNM model is commonly referred to as a decision model under
risk. Under the assumption of these known objective chances, the vNM expected
theory provides a systematic way of retrieving decision makers’ subjective util-
ities of the outcomes given their respective preferences among the probability
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distributions, i.e., among vNM lotteries. Now, it is conceivable that there are
cases where these objective chances might be lacking. Consider, for instance,
that in a horse race the gambler needs to choose between two gambles h and h′

on the possible outcomes of the horse race: either horse H1, or H2, or H3 will
the winning horses and the payoffs of the two gambles are given in the matrix
below.

H1 H2 H3

h $100 0 $20
h′ 0 $100 $20

(3.1)

That is, if gamble h is chosen and horse H1 wins the race then the gambler will
be paid with 100 dollars, 0 if H2 is the winner, and so on. Here, the winning
horses form a set of possible states of the world, denoted by S.9

As seen, in this example, there are no objective chances involved. In mak-
ing a decision, the gambler needs to provide his own probabilistic estimation
on the winning horse, based perhaps on his knowledge about the horses, past
experiences with horse race, or some other considerations. A decision framework
that treats this type of decision problems is often referred to as a decision model
under uncertainty.

A complete treatment of the above case will have to wait until the next
Chapter where we present Savage’s theory of subjective expected utility. In this
section we discuss an intermediate step where, instead of receiving direct cash
reward, the gambler is paid with some other type of prizes, namely roulette
lotteries p, q which indirectly lead to cash reward (e.g., if gamble h is chosen
and H1 wins the horse race then the gambler will be paid with roulette lottery
p which in turn says that with 50-50 chance the gambler will get either $100 or
$20 dollars).

H1 H2 H3

h p 0 q
h′ 0 p q

⇒
$100 $20 0

p 1/2 1/2 0
q 0 1/2 1/2

The distinction between these two types of lotteries, namely horse-race lot-
teries and roulette lotteries, was introduced by Anscombe and Aumann (1963),
where the roulette lotteries are just vNM lotteries. Their decision model is
hence a mixture system containing both subjective and objective probabilities.
The goal, as stated by the authors, is “to define the person’s probabilities in
terms of chances, by an extension of von Neumann-Morgenstern theory.”

Let X be a finite set of prizes, LX be the lottery space of X, and let S

be a finite set of states of the world. A horse-race lottery (or horse lottery for
short) is a function mapping from S to LX .10 Denote the set of all horse lotteries
9We shall provide an analysis of the nature of the states in our discussion of Savage’s decision
model later. For the time being, a state of the world is taken as a specification of a possible
way that the world may unfold that is relevant to the current decision situation.
10In later chapters, we will be discussing the additivity condition of the subjective probability
measures derived. This depends on the basic setups of the spaces in which various probability
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by H, that is, H = LX
S . Given the definition of compound vNM lotteries in

(2.3), define the operation of (convex) combination of horse lotteries as follows:
a compound horse lottery of any h, h′ ∈ H with scalar λ ∈ [0, 1], in symbols
h⊕λ h′, is defined as(

h⊕λ h′
)
(s) =Df h(s)⊕λ h′(s) for all s ∈ S. (3.2)

Notation. By definition, h(s) is itself a probability function in LX , we often
write h(s)(·) as hs(·) for short. Then, under our current notational convention,
h denotes a horse lottery and hs is a roulette lottery, i.e., a vNM lottery.

Note that, in (3.2), for any given state s ∈ S, it is clear that h(s)⊕λ h
′(s) ∈

LX , and hence h ⊕λ h′ is also a horse lottery in H by definition. The task for
our decision maker is to choose among the horse lotteries the preferred one(s).
The preferences are further represented by a preference relation ≿, from which
her subjective probability measure µ on the occurrences of the states and her
subjective utility measure u on the prizes are to be deduced.

3.2. State-dependent utility. Let ≿ be a preference relation (a preorder)
on the set of horse lotteries H. In strict parallel to the von Neumann and
Morgenstern postulates vNM 1-3, the first three Anscombe and Aumann (A-A)
axioms on ≿ take the following form.

A-A 1. ≿ is a complete preorder.

A-A 2. For all h, h′, t ∈ H and λ ∈ (0, 1],

h ≻ h′ ⇐⇒ h⊕λ t ≻ h′ ⊕λ t.

A-A 3. For any h, h′, t ∈ H, there exist a, b ∈ (0, 1), such that

h ≻ t ≻ h′ =⇒ h⊕a h
′ ≻ t ≻ h⊕b h

′.

These axioms are sufficient for deriving the following state-dependent repre-
sentation theorem which can be seen as a direct consequence of Corollary 2.7.

Theorem 3.1. Let ≿ be a preference relation on HS,X , then ≿ satisfies A-
A 1-3 if and only if there exist (state-dependent utility) functions u : S×X 7→ R
such that, for any h, h′ ∈ HS,X ,

h ≿ h′ iff
∑
s∈S

∑
x∈X

hs(x)u(s, x) ≥
∑
s∈S

∑
x∈X

h′s(x)u(s, x). (3.3)

measures are defined. Anscombe and Aumann (1963) were not explicit about the cardinality
of the set of prizes on which vNM lotteries are defined. They mentioned in passing that the
restriction to finite space in Luce and Raiffa (1957)’s proof of the existence of a vNM utility
representation is not necessary, however, the examples they used (i.e., roulette lotteries) and
the details of their proofs involved are all finitary in nature. They also compared their system
with that of Savage (1954), where the horse lotteries are just a special type of Savage acts
(with vNM lotteries as consequences). They did not give further details on the structure of
the state space on which their horse lotteries are defined. Here, again, their examples and the
proposed axioms (Assumption 1 & 2) all use finite structures. To simplify matters, we discuss
the case where all vNM lotteries are simple and the set of states is finite. That is, we consider
LX instead of L∗

X .
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The right hand side of (3.3) takes the full advantage of the fact that each hs

is itself a probability function, the task is then to show that there exists a utility
function such that the comparison between horse lotteries can be represented by
their expected utilities.

Proof. We give only the non-trivial “only if” direction of the proof. Let
LS×X denote the set of probability functions defined on S ×X. Note that, for
each horse lottery h ∈ H = LX

S , there corresponds a ĥ ∈ LS×X such that for
any s ∈ S and any x ∈ X, hs(x) = |S| · ĥ(s, x). Let Ĥ be the set of all ĥ’s, that
is,

Ĥ =
{
ĥ
∣∣ hs(x) = |S| · ĥ(s, x) and h ∈ H

}
. (3.4)

Thence Ĥ is subset of LS×X which is convex and compact (because H is). Fur-
ther, define an ordering ≿̂ on Ĥ such that, for any ĥ, ĥ′ ∈ Ĥ,

ĥ ≿̂ ĥ′ ⇐⇒ h ≿ h′. (3.5)

It is easy to see that ≿ on H satisfies A-A 1-3 if and only if the induced ordering
≿̂ on Ĥ satisfies vNM 1-3. By compactness and vNM 3 (i.e., continuity), there
exists an ≿̂-maximum and an ≿̂-minimum in Ĥ. Hence, by Corollary 2.7 and
(3.5), there exists a vNMUF v ∈ RS×X such that

h ≿ h′ ⇔
∑

(s,x)∈S×X

ĥ(s, x)v(s, x) ≥
∑

(s,x)∈S×X

ĥ′(s, x)v(s, x)

⇔
∑
s∈S

∑
x∈X

1

|S|
hs(x)v(s, x) ≥

∑
s∈S

∑
x∈X

1

|S|
h′s(x)v(s, x).

The proof is completed once we define u(s, x) to be v(s, x)/|S|. □
As seen, the derived two-place utility function u is state-dependent as the

function value also depends on the state. For any s ∈ S, we write u(s, ·) as us(·)
and refer to the latter as the utility function with respect to state s. Theorem 3.1
then states that the agent’s preference relation among horse lotteries can be
represented using a series of state-dependent utility functions {us}s∈S .

3.3. State-independent utility. Theorem 3.1 can be further strengthened
by adding one more axiom so that the representation takes the form of a com-
bination of agent’s subjective probability on states and her subjective state-
independent utility on the prizes. The strengthening relies on the following con-
cept of “constant horse lotteries”.11

Definition 3.2. A horse lottery is said to be constant with respect to p ∈
LX , written cp if cp(s) = p for all s ∈ S.

It is clear from the definition above that each constant horse lottery can
be identified with a vNM lottery. This then enables us to define a preference

11Constant horse lotteries are special cases of Savage’s notion of “constant acts” in Defini-
tion 5.3.
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ordering ≿∗ on LX using the preference relation ≿ over H as follows

p ≿∗ q ⇐⇒ cp ≿ cq for all p, q ∈ LX . (3.6)

Call ≿∗ the preference relation on LX induced by ≿.

Lemma 3.3. Let ≿ be a preference on H and ≿∗ the corresponding induced
preference on LX , if ≿ satisfies A-A 1-3 then ≿∗ satisfies vNM 1-3.

Proof. We prove the lemma by direct verifications.
(1) vNM 1 can be easily verified using the definition of constant horse lottery.
(2) For vNM 2, suppose that p ≻∗ q, then we have cp ≻ cq via (3.6). By A-A 2,

for any r ∈ LX and λ ∈ (0, 1],

cp ≻ cq ⇐⇒ cp ⊕λ cr ≻ cq ⊕λ cr.

By (3.2), cp⊕λ cr(s) = cp(s)⊕λ cr(s) for all s ∈ S. Since cp, cq, cr are constant
horse lotteries, we have that cp(s)⊕λ cr(s) = p⊕λ r for all s ∈ S. Similarly,
cq ⊕λ cr = q ⊕λ r. Hence cp ⊕λ cr ≻ cq ⊕λ cr if and only if cp⊕λr ≻ cq⊕λr,
thence p⊕λ r ≻∗ q ⊕λ r via (3.6).

(3) Finally, suppose that p ≻∗ r ≻∗ q, then by (3.6) we have cp ≻ cr ≻ cq.
By A-A 3, there exists a, b ∈ (0, 1] such that cp ⊕a cq ≻ cr ≻ cp ⊕b cq.
Using a similar argument as in (2), we get cp⊕aq ≻ cr ≻ cp⊕bq. Therefore,
p⊕a q ≻∗ r ≻∗ p⊕b q via (3.6), and hence vNM 3. □
Further, a state s ∈ S is said to be null if the agent is indifferent between any

horse lotteries that differ only on s, s is non-null if it is not null. We are now in
the position to state the fourth A-A axiom which facilitates state-independent
utility representation.

A-A 4. For any h, h′ ∈ H,
(1) if hs ≿∗ h′s for all s ∈ S then h ≿ h′;
(2) if hs ≿∗ h′s for all s ∈ S and hs ≻∗ h′s for some non-null s ∈ S then

h ≻ h′;
where ≿∗ is the preference on LX induced by ≿.

Axiom A-A 4 is commonly known as the Monotonicity axiom (or sometimes
the Dominance or State-independent axiom). It asserts that horse lottery h

weakly dominates h′ if, in each state s, the vNM lottery hs weakly dominates
h′s (under the induced preference ordering through the notion of constant horse
lottery); h strictly dominates h′ if, for some state s, hs strictly dominates h′s. As
shown the in following lemma, the axiom regulates in a very rigid way the two
preferential systems (≿ and ≿∗).

Lemma 3.4. Let ≿ and ≿∗ be as above. Suppose that ≿ satisfies A-A 1-4
and that, for any s ∈ S, us be a utility function obtained in Theorem 3.1, then
us is a vNMUF with respect to ≿∗.
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Proof. By Lemma 3.3, ≿∗ satisfies vNM 1-3, then it suffices to show that,
for any p, q ∈ LX ,

p ≿∗ q if and only if
∑
x∈X

p(x)us(x) ≥
∑
x∈X

q(x)us(x).

From p ≿∗ q we have cp ≿ cq by definition. Fix s, let h be the horse lottery that
differs from cq in precisely the following way

h(ν) =

p if ν = s

q if ν ̸= s
.

That is, h yields p at s but agrees with cq at all other states. Then, by A-A 4,
we have p ≿∗ q iff h ≿ cq. It follows, by (3.3), that

h ≿ cq ⇔
∑
ν∈S

∑
x∈X

hν(x)uν(x) ≥
∑
ν∈S

∑
x∈X

q(x)uν(x)

⇔
∑
x∈X

p(x)us(x) +
∑

ν∈S\{s}

∑
x∈X

q(x)uν(x) ≥
∑
ν∈S

∑
x∈X

q(x)uν(x)

⇔
∑
x∈X

p(x)us(x) ≥
∑
x∈X

q(x)us(x).

This completes the proof of the lemma. □

Theorem 3.5 (Anscombe and Aumann). Let ≿ be a preference relation on
H. Then ≿ satisfies A-A 1-4 if and only if there exists a utility function u ∈ RX

and a probability measure µ on S such that, for any h, h′ ∈ H,

h ≿ h′ iff
∑
s∈S

µ(s)
∑
x∈X

hs(x)u(x) ≥
∑
s∈S

µ(s)
∑
x∈X

h′s(x)u(x). (3.7)

Proof. By Theorem 3.1, there exists a series of state-dependent functions
{us}s∈S such that (3.3) holds. Further, Lemma 3.4 shows that the us’s are
vNM utility representations with respect to the same preference relation ≿∗

over lotteries, and hence are unique up to positive affine transformations. That
is, if we fix a state s′ and let u = us′ , then for any s ∈ S, there, by (2.12), exist
as, bs (as > 0) such that us = asu+ bs. Then, from (3.3), we get

h ≿ h′ iff
∑
s∈S

as
∑
x∈X

hs(x)u(x) ≥
∑
s∈S

as
∑
x∈X

h′s(x)u(x). (3.8)

Now, define µ : S 7→ R+ to be such that

µ(s) =
as∑
ν∈S aν

. (3.9)

This, together with (3.8), yield what we want. □
In the A-A system above, (3.9) is interpreted as the agent’s subjective prob-

ability, which, as seen, is defined in terms of the coefficients of a series of vNM
utility functions which, in turn, are defined through vNM lotteries. The model
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is hence a dualistic system featuring both subjective and objective probabili-
ties. In the next chapter, we introduce Savage’s theory of expected utility where
probabilities are given a purely subjective and decision-theoretic interpretation.





CHAPTER II

Savage’s Subjectivism

Personalistic views hold that probability measures the confidence
that a particular individual has in the truth of a particular proposi-
tion, for example, the proposition that it will rain tomorrow. These
views postulate that the individual concerned is in some ways “rea-
sonable,” but they do not deny the possibility that two reasonable
individuals faced with the same evidence may have different degrees
of confidence in the truth of the same proposition.

—— Savage (1972)

4. Introduction

This chapter introduces Leonard J. Savage’s theory of subjective expected
utility as presented in his seminal book the Foundations of Statistics.1 As in-
dicated in the opening quote, one main objective of this project is to provide a
subjective interpretation of the central notion employed in virtually all stages of
statistical inferences, namely the notion of probability. Built on earlier works of
Frank Ramsey, Bruno de Finetti, John von Neumann and Oskar Morgenstern,
among others, Savage’s theory seeks to ground a theory of personal probability
in a normative theory of rational decision making of highly idealized reasonable
agents, where by “reasonable agents” Savage means individuals who are capa-
ble of distinguishing “between coherent behavior and blunder, or demonstrable
incoherence, in the face of uncertainty.” This is achieved by prescribing various
rationality principles and structural assumptions governing decision makers’ be-
haviors in decision-making situations, by which the agents can police their own
potential decisions against incoherency.

Savage’s theory begins with the decision maker’s preferences over her poten-
tial actions, modeled by a binary preference relation. A set of axioms is postu-
lated on this preference relation. From the first five postulates a comparative
notion of subjective probability is derived which reflects the agent’s qualitative
probabilistic judgments over possible circumstances under which these actions
are taking place. With the sixth postulate, the derived qualitative probability is
further represented by a numerical probability measure together with a personal
utility function for simple acts (i.e., acts that may lead to finitely many potential

1The first edition of Savage’s book where the axiomatic theory was first introduced appeared
in 1954 published by John Wiley & Sons. All citations in this dissertation refer to the second
revised edition published by Dover Publications in 1972.

21



22 II. SAVAGE’S SUBJECTIVISM

consequences under different states). The last postulate is brought in so that
the utility function for simple acts can be extended to all acts (cf. Table 4.1).

Table 4.1. Inferential order in Savage’s system.

P1-5 + P6 + P7

Qualitative probability ⇒ Quantitative probability ⇒ Utility for all actsUtility for simple acts

Savage’s approach differs from the methods adopted by Ramsey and Anscombe-
Aumann in that, in the latter cases, the agents’ subjective probabilities are
derived from their personal utilities, which in turn are constructed based on
some presupposed chance mechanisms (or, in the case of Ramsey, the notion
of ethically neutral propositions, which plays a similar role as an unbiased coin
receiving objective probability 1/2). This inferential order is reversed in Sav-
age’s subjectivism where the preference relation over acts is taken as the only
primitive notion, from which the agent’s personal probabilities and utilities are
subsequently revealed. As a result of this methodolotical reversal, Savage’s ap-
proach may appear to have some computational disadvantages in the sense that
the mathematical representation theorem given by Savage is considerably more
involved than many of its alternatives, yet the theory is conceptually significant
in that the system is maintained as a purely subjective framework with no direct
reference to objective probabilities.

Our expositions will follow closely Savage’s original approach. The plan is as
follows. After an introduction of basic definitions and notations in Section 5.1, we
provide an analysis of the well-known “sure-thing” principle (Section 5.2). This
will be followed by a reconstruction of Savage’s theory of qualitative probability
(Section 6.1), quantitative probability (Section 6.2), and personal utility for
simple acts (Section 7.1). In Section 7.2, we investigate the role of Savage’s last
postulate (i.e., P7) played in extending utility from simple acts to general acts.

5. Decision Matrix

5.1. States, consequences, and acts. The basic setup of Savage’s deci-
sion model can be illustrated in the decision matrix in Table 5.1, where S =

{s1, s2, . . .} is an (infinite) set of states of the world specifying those possi-
ble circumstances that are relevant to the decision situation at hand,2 X =

{o1,1, o1,2, . . .} is a (finite or infinite) set of consequences (or outcomes), and
f1, f2, . . . are commonly referred to as (Savage) acts, which are arbitrary func-
tions mapping from S to X. The intended interpretation of an act fm is that
the agent’s choice of fm will lead to consequence om,n if sn is the true state of
the world. Denote the set of all acts by A.

2 In fact, as a feature of Savage’s theory, S must contain uncountably many states, we will
return to this point later (cf. Remark 6.16 below).
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Table 5.1. Savage’s decision matrix.

s1 s2 · · · sn · · ·
f1 o1,1 o1,2 · · · o1,n · · ·
f2 o2,1 o2,2 · · · o2,n · · ·
... . . .
fm om,1 om,2 · · · om,n · · ·

As a primitive assumption, the agent is assumed to have preferences over
acts, which are modeled by a preorder ≿ on A. Thus, for any acts f, g ∈ A,
f ≿ g is taken to mean that act f is weakly preferred to act g (or that g is not
preferred to f) by the agent. We define f ≻ g =Df f ≿ g and g ̸≿ f . This
means that f is strictly preferred to g. And define f ∼ g =Df f ≿ g and g ≿ f ,
that is, f and g are equi-preferable (or that f is indifferent to g).

Definition 5.1 (Combined acts). For any f, g ∈ A, define the combination
of f and g with respect to an event E (a set of states), written f ⊕E g, to be
such that:

(f ⊕E g)(s) =

f(s) if s ∈ E

g(s) if s ∈ EC ,
(5.1)

where EC = S − E is the compliment of E.3

That is to say, f ⊕E g is the act which agrees with f on event E, with g on
EC , and it is easily seen that f ⊕E g ∈ A. Using the concept defined in (5.1),
we can interpret (f ⊕E g) ⊕F h as saying: do f if E ∩ F obtains, g if F ∩ EC

occurs, and h if FC , and so on. The following is a list of simple properties of
operation ⊕E . The proof is immediate from the definition and omitted.

Lemma 5.2. For any E,F ∈ F , and for any acts f, g ∈ A,
(1) f ⊕E g = g ⊕EC f ;
(2) (f ⊕E g)⊕F g = f ⊕E∩F g;
(3) f ⊕E (f ⊕F g) = f ⊕E∪F g;
(4) (f ⊕E g)⊕EC g = g.

The following concept is a key structural component of Savage’s theory, which
will play an important role in the discussions that follows.

Definition 5.3 (Constant acts). For any a ∈ X, an act is said to be constant
with respect to consequence a, in symbols ca, if

ca(s) = a for all s ∈ S. (5.2)

In other words, act ca “constantly” outputs consequence a no matter which
state s ∈ S transpires. Now, given a preference ordering ≿ on A, an ordering

3Some writers use ‘(f,E, g)’ or ‘fEg’ or ‘f |E+g|EC ’ or ‘
[
f on E, g on EC

]
’ for combined acts.
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Figure 5.1. Constant act ca and other parameters in Savage’s model.

≿∗ over consequences can be defined using constant acts by

a ≿∗ b ⇐⇒ ca ≿ cb for all a, b ∈ X. (5.3)

That is to say, consequence a is said to be weakly preferred to consequence b

if the constant act ca is weakly preferred to cb. Call ≿∗ the preference relation
on X induced by ≿. For notational purpose, we often use the same symbol
‘≿’ for both the preference relation over acts and the induced preference over
consequences and let the context determine on which set of alternatives a given
preference ≿ is defined. With these two preference orderings, we proceed to
define a (qualitative) relation among events.

Definition 5.4. For any events E,F ∈ F , say that E is weakly more probable
than F , written E ⪰ F (or F ⪯ E), if, for any a, b ∈ X with a ≿ b,

ca ⊕E cb ≿ ca ⊕F cb (5.4)

(or equivalently if cb ⊕F ca ≿ cb ⊕E ca). E and F are said to be equally probable,
in symbols E ≃ F , if both E ⪰ F and F ⪰ E hold.

The definition says that the agent’s belief that E is more probable than F

is manifested in her preference for the compound act ca ⊕E cb which, in turn,
is determined by the agent’s subjective estimation of the likelihood of obtaining
the more favorable constant act ca. (A postulate, i.e. SVG 4, will be inserted in
order to ensure that the notion of one event being more probable than another
is well defined, that is, the definition in (5.4) does not depend on the choice of
a, b.)

Remark. 1. Savage’s “simple ordering” is, in our terminology, a total pre-
order. He uses ‘F ’ for the set of consequences and he characterizes total
preorders as “simple orderings”. In particular, he uses boldface letters f , g,
. . . for acts and italics f , g, . . . for values of “acts that are constant”, writing
f ≡ g when f(s) = g for all states s. He also uses ‘f ’ for constant act whose
value is f . Furthermore, he sometimes switches to italicized notation even
when the function is not constant, as he does in the statement of P4 on p.31,
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where he writes fA(s) instead of fA(s), or in Theorem 1 on page 70, where he
writes f(s) = fi instead of f(s) = fi as he should.

2. As seen from the definitions above, the construction of constant acts ca (a ∈
X) plays a central role in associating various concepts in Savage’s decision
model, and it is through the notion of constant acts that different binary
relations are interrelated (see Figure 5.1). This notion, however, is highly
problematic. We address the issues brought by the assumption of the existence
of constant acts (one for each consequence) in great detail in Gaifman and Liu
(2015) where we provide a simplification of Savage’s theory without appealing
to constant acts. The exposition in this chapter however will still use constant
acts.

The goal is to show that the defined “more probable” relation ⪰ is a qual-
itative probability (will be made precise below) and that there exists a unique
numerical probability measure µ on (S,F) such that4

E ⪰ F ⇐⇒ µ(E) ≥ µ(F ), for all E,F ∈ F , (5.5)

and that there is a real-valued function u on X for which

f ≿ g ⇐⇒
∫
S
u
[
f(s)

]
µ(ds) ≥

∫
S
u
[
g(s)

]
µ(ds), (5.6)

for all f, g ∈ A, where u is unique up to a positive transformation. This is Sav-
age’s the main representation theorem we seek to prove, which will be discussed
in Section 6 and Section 7. But before proceeding to detailed reconstruction,
let us first analyze Savage’s well-known “sure-thing” principle and its formal
configurations.

5.2. The sure-thing principle and postulate 2. The cornerstone of Sav-
age’s decision model is a postulated rationality principle known as the “sure-thing
principle”. The following is the example used by Savage to motivate this princi-
ple.

Example 5.5 (Businessman). A businessman contemplates buying a certain
piece of property. He considers the outcome of the next presidential election
relevant to the attractiveness the purchase. So, to clarify the matter for himself,
he asks whether he would buy if he knew that the Republican candidate were
going to win, and decides that he would do so. Similarly, he considers whether
he would buy if he knew that the Democratic candidate were going to win, and
again finds that he would do so. Seeing that he would buy in either event, he
decides that the should buy, even though he does not know which event obtains,
or will obtain, as we would ordinarily say. �

4Savage stated explicitly that in his theory probability is defined for all events which are taken
to be all subsets of S, and hence A = XS (Savage, 1972, p.40). For our purpose, we restrict
our attention to “measurable acts.” That is to say, given measurable spaces (S,F) and (X,G)
where F and G are some σ-algebras equipped on S and X, respectively, we consider only those
functions (acts) that are measurable F/G.
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As illustrated in this example, the decision-theoretic principle under con-
sideration stems from an intuitive idea of reasoning by cases that if a decision
maker takes certain course of action given the occurrence of some event and she
will do the same if the event does not occur, then she shall proceed with that
action without taking into account as to whether or not the event takes place,
in other words, the implementation of the course of action is a “sure-thing”. To
state in terms of preferences over acts, the sure-thing principle says that

STP: If the decision maker prefers one act over another assuming either
certain event obtains or that the compliment of the event obtains, then
her preference over the two acts shall remain unchanged.

The principle is sometimes referred to as the dominance principle, which can be
stated more generally as follows:

STPn: if the state space is partitioned into n-many mutually exclusive
cells, which represent n different decision situations, and if the conse-
quence of one act weakly dominates that of another in each one of these
possible situations, then the act is weakly preferred throughout.

Savage takes this consideration to be fundamental to rational decision making:
“I,” he says, “know of no other extra-logical principle governing decisions that
finds such ready acceptance” (ibid. p. 21).

5.2.1. Conditional preference. Note that the statement of the sure-thing
principle above employs explicitly a concept of conditional preference, that is,
one act being preferred to another given the occurrence of certain event. Since
the current formal setup is based entirely on unconditional preferences over acts,
the notion of conditional preference is not directly expressible. Some alternative
arrangements hence need to be made.

Definition 5.6 (Conditional preference). Let E be some event, then, given
acts f, g ∈ A, f is said to be weakly preferred to g given E, written f ≿E g, if,
for all pairs of acts f ′, g′ ∈ A, we have

(1) f (g) agrees with f ′ and g agrees with g′ on E,
(2) f ′ agrees with g′ on EC , and
(3) f ′ ≿ g′.

That is,

f(s) = f ′(s), g(s) = g′(s) if s ∈ E

f ′(s) = g′(s) if s ∈ EC .

}
=⇒ f ′ ≿ g′. (5.7)

In other words, the conditional preference of f over g on the occurrence of
event E is defined in terms of all unconditional preferences of f ′ over g′ under the
constraints that f ′ and g′ agree, respectively, with f and g on event E and with
each other on EC , and that f ′ unconditionally weakly preferred to g′. Table 5.2a
contains an illustration of conditional preference, where {E,EC} forms a simple
partition of S for which f(s) = a for all s ∈ E and f(s) = c for s ∈ EC (other
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Table 5.2. Illustrations of

(a) Conditional preference

E EC

f a c
g b d
f ′ a e
g′ b e

(b) Savage’s postulate 2

E EC

f a c
g b c
f ′ a d
g′ b d

acts defined similarly). Then the definition of conditional preference says that f
is weakly preferred to g given E if f ′ ≿ g′ for all such f ′s and g′s. Now, given
the definition of conditional preference, STP can be translated into5[

f ≿E g, f ≿EC g
]

=⇒ f ≿ g. (STP)

Savage, however, was unwilling to incorporate (STP) directly into his system for
the reason that the concept of conditional preference is based on knowledge of
the possible occurrences of some events, the introduction of which may lead to,
it is said, unsought philosophical complications.6 Instead, he posited a different
principle which is a technical approximation to STP known as the formal version
of the sure-thing principle, and he left STP itself as an informal or, to use his
phrase, a “loose” version of the sure-thing principle.

This alternative principle contains no direct reference to conditional prefer-
ences and is officially stated as his second postulate (P2) for rational decision
making, which says that, for any acts f, g, h, h′ and for any event E,

f ⊕E h ≿ g ⊕E h ⇐⇒ f ⊕E h′ ≿ g ⊕E h′, (P2)

As the example in Table 5.2b illustrates, if f ′ and g′ agree, respectively, with f

and g on E and with each other on EC , then (P2) mandates f ≿ g iff f ′ ≿ g′.
Here we remark that one technical motivation for imposing (P2) is to provide a
provision to the definition of conditional preference in Definition 5.6 so that the
notion is well defined. (Notice that, in the absence of (P2), an act f may fail
to be conditionally preferred to another act g (i.e. f ̸≿E g) if there exist two
pairs of acts (f ′, g′) and (f ′′, g′′) satisfying both conditions (1) and (2) for which
f ′ ≿ g′ and f ′′ ̸≿ g′′. This possibility for f to fail to be conditionally preferred
to g is excluded by (P2), under which f ̸≿E g if and only if, for all f ′ and g′

satisfying (1) and (2), f ′ ̸≿ g′.) Beyond this technical reason for invoking (P2) as

5In what follows, we use the boldface STP to refer to the informal statement of the principle
and use (STP) to refer to its formulation in the formal model, same for P2 and (P2) below.
6 Savage (1972, p. 22) explains: “The sure-thing principle [i.e., STP above] cannot appro-
priately be accepted as a postulate in the sense that P1 is, because it would introduce new
undefined technical terms referring to knowledge and possibility that would refer it mathemat-
ically useless without still more postulates governing these terms.” See Gaifman (2013, p. 375)
for a critique of this line of argument, where it is pointed out that Savage is guilty of con-
fusing hypothetical reasoning with counterfactual knowledge: it is the former, not the latter,
that is involved in formulating the sure-thing principle, which is conceptually transparent and
non-problematic.
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an additional constraint on the notion of conditional preferences, the rationale
behind (P2) as a self-standing rationality principle can be characterized as follows

P2: If the consequences of two acts differ on the occurrence of some event
E but otherwise agree with each other, then their preferential compar-
ison between these two acts shall be decided on those states in E and
their corresponding consequences.

What underlies this principle seems to be the simple consideration that the
difference between any two items is distinguished by the parts where they are
actually different. Then P2 implies that if two sets of decision problems have
identical payoff structures on E but otherwise have respectively in-differentiable
payoffs on EC then if an option is preferred in the first set of decision problem
it should also be favored in the second. Yet, we stress that, even with the
presence of this compelling intuition, P2 is after all a different and, in fact,
more restrictive principle than STP. We illustrate this point by showing that
(P2) is strictly stronger than (STP) in the current formal model.7

Lemma 5.7. Let ≿ be a preorder on A, then (P2) implies (STP).

Proof. Assuming (P2), it is easily seen that the definition of conditional
preference can be equivalently stated as follows

f ≿E g ⇐⇒ f ⊕E h ≿ g ⊕E h, for all h ∈ A. (5.8)

Then the left-hand side of (STP) yields, via (5.8), that

f ⊕E h ≿ g ⊕E h (5.9)

f ⊕EC h′ ≿ g ⊕EC h′. (5.10)

where h and h′ are arbitrary acts in A. Now, in (5.9), substitute h with h⊕E f ,
then, by (P2), we get f = f ⊕E (h⊕E f) ≿ g ⊕E (h⊕E f) = g ⊕E f. Similarly,
in (5.10), replace h′ with g ⊕E h′, then f ⊕EC g = f ⊕EC (g ⊕E h′) ≿ g ⊕EC

(g ⊕E h′) = g. Together we have that f ≿ g ⊕E f and f ⊕EC g ≿ g. Note that,
by Lemma 5.2(1), g ⊕E f = f ⊕EC g, therefore, by transitivity of ≿, we have
f ≿ g. □

The converse, however, does not necessarily hold, that is, there are situations
in which (STP) is satisfied but (P2) is violated as shown in the following example.

Example 5.8. Let S = {s1, s2}, X = {a, b}. Then there are four possible
acts mapping from S to X as illustrated in the table below.8

7Gaifman (2013, p. 376) outlined a general method of distinguishing STP from P2 in a partial-
act based system, where a partial-act is a (partial) function defined on some event and maybe
undefined on other events. And it was shown that the counterpart of P2 in a partial-act system
is independent of that of STP. Here, we point out that, as far as Savage’s total-act system is
concerned, (P2) does imply (STP), but not vice versa.
8Strictly speaking, the state space S in Savage system needs to contain uncountably many
states (cf. Footnote 2). In writing S = {s1, s2} we can assume that S is partitioned into two
events s1 and s2.
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s1 s2

f1 a a

f2 b a

f3 a b

f4 b b

Consider the case where f1 ≿ f2 ∼ f3 ≺ f4. Then it is easy to see that P2
is violated but (STP) is trivially satisfied. (This is because our example is so
arranged that, for any acts f, g ∈ {f1, f2, f3, f4}, (1) if f is different from g then,
at least one of the conditional preferences f ≿s1 g and f ≿s2 g fails,9 in which
case the antecedent of (STP) is false, and hence the conditional true; (2) if f is
identical to g then (STP) is trivially true). �

Lemma 5.7 shows that Savage’s proposed (P2) is deductively sufficient for
enforcing (STP), however, as shown in Example 5.8, it is more demanding than
what (STP) is intended for. Let us summarize the above discussion in the
following theorem.

Theorem 5.9. Let ≿ be a complete preorder on A, then
(1) (P2) =⇒ (STP),
(2) (STP) ≠⇒ (P2).

To be sure, the reason that (P2) and (STP) are not deductively equivalent
in Savage’s system is largely due to the peculiar way how conditional preferences
are formulated in his model, where the concept of conditional preference and
(P2) are essentially interlocked. Gaifman (2013) suggested a way of defining
conditional preference in a more straight forward manner so that STP can be
formulated directly without going through Savage’s roundabout way of using
mutually dependent notions of conditional preference and (P2). Our discussions
and generalizations in later sections will still be made within Savage’s framework
with total-acts, we, however, emphasize on a clear distinction between STP and
P2, and their formalizations.

5.2.2. Null events. Further, an event E ⊆ S is said to be a null event if, for
any f, g ∈ A, f ≿E g, that is, the agent is indifferent between any two acts given
the occurrence of E. Intuitively, null events are those events whose occurrences
take no effect in the agent’s decision procedure as the individual believes that it
is impossible that they obtain. As we shall soon see, in the current system null
events corresponds to those events that receive probability zero. The following
is a list of basic properties of null events.

Lemma 5.10. Let E be a null event, then given P2,
(1) E ≃ ∅;
(2) if f(s) = f ′(s) and g(s) = g′(s) for all s ∈ EC , then f ≿ g iff f ′ ≿ g′;

9We write f ≿{s1} g as f ≿s1 g for short, same below.
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(3) if f(s) = g(s) for all s ∈ EC , then f ∼ g.

Proof. (1) Let a, b ∈ X be such that a ≿ b. Since E is null, we have
ca ≿E cb. This implies, by (P2) and (5.8), that

ca ⊕E cb ≿ cb ⊕E cb = cb = cb ⊕∅ cb.

By Definition 5.4, E ⪰ ∅. Similarly, from E being null we get cb ≿E ca,
thence

ca ⊕∅ cb = cb ⊕E cb ≿ ca ⊕E cb.

By definition, ∅ ⪰ E. Together, we have E ≃ ∅.
(2) By symmetry, we show f ≿ g implies f ′ ≿ g′. Note that, since E is null, we

have f ′ ≿E g′. Then by (STP), we only need to show that f ′ ≿EC g′. By
the definition of conditional preference and (P2), it’s sufficient to show that,
there exists some h ∈ A such that

f ′ ⊕EC h ≿ g′ ⊕EC h. (5.11)

Since f ′ and g′ agree respectively with f and g on EC , (5.11) holds iff

f ⊕EC h ≿ g ⊕EC h.

Take h to be f , then the proof is completed if it can be shown that

f ≿ f ⊕E g. (5.12)

To this end, note that since E is null, we have g ≿E f ⊕E g, it follows,
through (5.8), that, for any t ∈ A, g ⊕E t ≿ (f ⊕E g) ⊕E t. Let t = g, then
this together with the assumption f ≿ g yield (5.12), which is what we want.

(3) This is an easy consequence of (2). □
Lemma 5.10(2) says that given any pairs of acts, if they differ pair-wisely

only on events that are considered null then their relative preferences will remain
the same (cf. the table below).

Table 5.3. f ≿ g iff f ′ ≿ g′

E (null) EC

f a e
g b f
f ′ c e
g′ d f

As we shall see, this property plays an important role in deriving a utility
function for consequences.

6. Subjective Probability

6.1. Qualitative probability. As the first step of our reconstruction of
Savage’s expected utility representation theory, we introduce the following con-
cept of qualitative probability:
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Definition 6.1 (Qualitative probability). Let S be a nonempty set, a binary
relation ≽ on S is said to be a qualitative probability if, for any A,B,C ∈ F ,

i. ≽ is a weak order (reflexive, transitive, and complete),
ii. A ≽ ∅,
iii. S ≻ ∅,
iv. A ≽ B if and only if A ∪ C ≽ B ∪ C, provided A ∩ C = B ∩ C = ∅.

where ≻ is the strict (i.e., the asymmetric) part of ≽.

We show that if the preference relation ≿ over acts satisfies the following list
of axioms postulated by Savage then the binary relation ⪰ over events (sets of
states) defined in (5.4) is a qualitative probability.10

SVG 1. ≿ is a weak order (complete preorder).

SVG 2. For any f, g ∈ A and for any E ⊆ S, f ≿E g or g ≿E f.

SVG 3. For any a, b ∈ X and for any non-null event E ⊆ S, ca ≿E cb if and
only if a ≿ b.

SVG 4. For any a, b, c, d ∈ X satisfying a ≿ b and c ≿ d and for any events
E,F ⊆ S, ca ⊕E cb ≿ ca ⊕F cb if and only if cc ⊕E cd ≿ cc ⊕F cd.

SVG 5. For some constant acts ca, cb ∈ A, cb ≻ ca.

Here, SVG 1 says that the preference relation is reflexive, transitive, and
complete, in other words, it is assumed in Savage’s system that all acts are
pairwise comparable. SVG 2 can be easily derived from the completeness as-
sumption and (P2), which says that the conditional preference relation over acts
is definable for any given event and is complete. The next two postulates are
commonly known as the “independence axioms” which impose further assump-
tions that the agent’s probabilistic estimations over events and value judgments
on consequences are, generally speaking, mutually independent: SVG 3 says that
the preference ranking of constant acts is solely dependent on the values of their
respective consequences which are robust against all states and SVG 4 says that
the agent’s qualitative probability estimations are in independent of his value
judgments over consequences (and that the relation “more probable” in Defi-
nition 5.4 is well defined). SVG 5 is brought in in order to rule out the trivial
case where the agent is indifferent among all consequences (constant acts). With
these postulates in hand, let’s proceed to show the following preparatory results.

Lemma 6.2. For any consequences a, b ∈ X and for any event E ∈ F , if
a ≿ b then ca ≿ ca ⊕E cb ≿ cb.

10SVG 1-5 correspond respectively to P1-5 in Savage (1972), the only difference is that we
present these postulates using the notations adopted here, same for SVG 6 and SVG 7 below.
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Proof. Given a ≿ b, we have that ca ≿ cb by (5.3). Let E be any non-null
event, then, by SVG 3, ca ≿E cb (this holds trivially if E is a null event); from
which we get, through (5.8), that for any h ∈ A,

ca ⊕E h ≿ cb ⊕E h. (6.1)

Let h = cb, that is ca ⊕E cb ≿ cb ⊕E cb = cb. This shows that ca ⊕E cb ≿ cb.
Similarly, one can show ca ≿ cb⊕EC ca by replacing h and E in (6.1) with ca and
EC , respectively. Then, by Lemma 5.2(1), ca ≿ ca ⊕E cb. □

Lemma 6.3. For any E,F ⊆ S, if F ⊆ E then E ⪰ F .

Proof. For any a, b ∈ X, assume that a ≿ b, and hence ca ≿ cb, then by
Lemma 6.2, ca ≿ ca ⊕F cb. By SVG 2, for ca and ca ⊕F cb, at least one of the
following two conditions holds,

(i) ca ⊕F cb ≿E ca;
(ii) ca ≿E ca ⊕F cb.

Suppose that (i) is the case, then, by (5.8), for any h ∈ A, (ca ⊕F cb) ⊕E h ≿
ca ⊕E h. Let h = ca, we have ca ⊕EC∪F cb ≿ ca. On the other hand, for EC ∪ F ,
Lemma 6.2 implies that ca ≿ cb ⊕EC∪F cb. Together, we have

ca ⊕EC∪F cb ∼ ca. (6.2)

Note that (6.2) holds for all a, b ∈ X and all E,F ⊆ S with F ⊆ E. Then let
E = S and F = ∅, from which we get ca ∼ cb for all a, b ∈ A. But this is
impossible if SVG 5 is in place.

The remaining possibility is (ii). In this case it follows, again by (5.8), that,
for any h ∈ A, ca ⊕E h ≿ (ca ⊕F cb) ⊕E h. Let h = cb, we get ca ⊕E cb ≿
(ca ⊕F cb)⊕E cb. Apply Lemma 5.2(2),

ca ⊕E cb ≿ (ca ⊕F cb)⊕E cb = ca ⊕F∩E cb = ca ⊕F cb.

This yields that ca ⊕E cb ≿ ca ⊕F cb, hence, by Definition 5.4, E ⪰ F . □

Theorem 6.4. If the preference relation ≿ on A satisfies SVG 1-5 then the
relation ⪰ over events is a qualitative probability.

Proof. We prove by direct verifications that ⪰ as defined in Definition 5.4
satisfies conditions i-iv in Definition 6.1.

i. Suppose that E ⪰ E′ ⪰ E′′, we show E ⪰ E′′. By definition, for any
a, b ∈ Z with a ≿ b, we have that ca ⊕E cb ≿ ca ⊕E′ cb ≿ ca ⊕E′′ cb;
then, by the transitivity of ≿ (SVG 1), we get ca ⊕E cb ≿ ca ⊕E′′ cb,
this yields that E ⪰ E′′. Hence, ⪰ is transitive. Completeness can be
shown similarly.

ii. In Lemma 6.3 let F = ∅, we get E ⪰ ∅ for all E ⊆ S.
iii. Let a, b ∈ X be such that ca ≻ cb (i.e., ca ≿ cb but cb ̸≿ ca, the existence

of the pair is guaranteed by SVG 5). Suppose, to the contrary, that
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∅ ⪰ S. Then, by (5.4), ca⊕∅ cb ≿ ca⊕S cb. On the other hand, note that
ca ⊕∅ cb = cb and ca ⊕S cb = ca, hence we have cb ≿ ca, a contradiction.
Therefore, S ≻ ∅.

iv. Suppose E ⪰ E′ and let F be such that E ∩ F = E′ ∩ F = ∅, we show
E ∪ F ⪰ E′ ∪ F . By definition, for any a, b ∈ X with a ≿ b, we have
that ca ⊕E cb ≿ ca ⊕E′ cb. Further, by SVG 2, one of the following is
true,
(a) ca ⊕E′ cb ≿FC ca ⊕E cb;
(b) ca ⊕E cb ≿FC ca ⊕E′ cb.
Suppose that (a) is the case, this implies that, for any h ∈ A,(

ca ⊕E′ cb
)
⊕FC h ≿

(
ca ⊕E cb

)
⊕FC h

Since E ∩ F = E′ ∩ F = ∅, let h = cb, we get, via Lemma 5.2(2),

ca ⊕E′ cb = ca ⊕E′∩FC cb ≿ ca ⊕E∩FC cb = ca ⊕E cb

By definition, we have E′ ⪰ E. This, together with the assumption
E ⪰ E′, imply that for any E,E′ ⊆ S, E ⪰ E′ iff E′ ⪰ E, which
contradicts (iii). The remaining possibility is (b), for which we have
that, for any h ∈ A,(

ca ⊕E cb
)
⊕FC h ≿

(
ca ⊕E′ cb

)
⊕FC h.

Let h = ca. Then, by Lemma 5.2(1),

ca ⊕F

(
ca ⊕E cb

)
≿ ca ⊕F

(
ca ⊕E′ cb

)
.

This yields, via Lemma 5.2(3), that ca⊕E∪F cb ≿ ca⊕E′∪F cb, and hence,
by Definition 5.4, E ∪ F ⪰ E′ ∪ F . □

This completes the proof that the “more probable” relation ⪰ among events
is indeed a qualitative probability. Before moving to show that there exists a
unique probability measure that agrees with ⪰, let us explore some properties
of qualitative probabilities which will become handy later.

Corollary 6.5. Let ⪰ be as in Definition 5.4, then for any E,E′, F, F ′ ⊆ S

the following hold:

(1) if F ⪰ E and F ∩ F ′ = ∅, then F ∪ F ′ ⪰ E ∪ F ′;
(2) if ∅ ⪰ E, then E ∪ F ′ ≃ F ′;
(3) if E is a null event, then E ∪ F ≃ F ;
(4) if F ⪰ E,F ′ ⪰ E′ and F ∩ F ′ = ∅, then F ∪ F ′ ⪰ E ∪ E′;
(5) if F ∪ F ′ ⪰ E ∪ E′ and E ∩ E′ = ∅, then either F ⪰ E or F ′ ⪰ E′;
(6) if EC ⪰ E and F ⪰ FC , then F ⪰ E.

Proof. By Theorem 6.4, ⪰ is a qualitative probability, and hence satisfies
conditions (a)–(d) in Definition 6.1.
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(1) Let E1 = E − F ′, then E ∪ F ′ = E1 ∪ F ′. From E1 ⊆ E and the
assumption F ⪰ E it follows from Lemma 6.3 that F ⪰ E ⪰ E1, hence
F ∪ F ′ ⪰ E1 ∪ F ′, that is, F ∪ F ′ ⪰ E ∪ F ′.

(2) In (1) let F = ∅, then F ′ ⪰ E ∪ F ′. On the other hand E ∪ F ′ ⪰ F ′

via Lemma 6.3. Hence E ∪ F ′ ≃ F ′.
(3) This is a direct consequence of (2) and Lemma 5.10(1).
(4) Let F = A ∪ Q,E′ = B ∪ Q where A = F − E′, B = E′ − F and

Q = F ∩ E′, hence F ∪B = E′ ∪ A = A ∪B ∪Q. Since B ∩ F = ∅, it
follows from the assumption F ⪰ E and (1) that E′∪A = F∪B ⪰ E∪B.
On the other hand, A ⊆ F and F ∩ F ′ = ∅ hence A ∩ F ′ = ∅, then
from F ′ ⪰ E′ it follows that F ′ ∪A ⪰ E′ ∪A via (1). Together we have
F ′ ∪A ⪰ E ∪B. Finally, since Q∩ (F ′ ∪A) = ∅ we have, again by (1),

F ∪ F ′ = F ′ ∪A ∪Q ⪰ E ∪B ∪Q = E ∪ E′.

(5) Otherwise, E ≻ F and E′ ≻ F ′ which imply E ⪰ F and E′ ⪰ F ′, then
by (4), E ∪E′ ⪰ F ∪F ′. It follows that F ∪F ′ ≃ E ∪E′ for all subsets
E,E′, F, F ′ of S with E ∩ E′ = ∅, which is absurd.

(6) Let {A,B,C,D} be a partition of S such that F = A ∪ B,FC = C ∪
D,E = A∪C, and EC = B∪D. By assumption EC = B∪D ⪰ C∪A =

E, this implies, through (5), that either B ⪰ C or D ⪰ A:
i. If B ⪰ C, it follows from the fact that A,B are disjoint that B∪A ⪰

C ∪A via (1), and hence F ⪰ E.
ii. If D ⪰ A, also F = A ∪ B ⪰ C ∪ D = FC , then by (4) above,

A∪B ∪D ⪰ A∪C ∪D. It follows that B ⪰ C via (1), hence back
to case (i).

Therefore, F ⪰ E. □

Remark 6.6. It is easy to verify that Corollary 6.5 (1) and (4)-(6) continue
to hold with ‘≻’ in place of ‘⪰.’

The following observations are easy consequences of Corollary 6.5 which will
be useful in the proof of the existence of numerical probability representation
below.

Corollary 6.7. Let {Ei}ni=1 and {Fj}nj=1 be partitions of S,
(1) if {Ei}ni=1 and {Fj}nj=1 are so indexed that E1 ⪯ · · · ⪯ En and F1 ⪰

· · · ⪰ Fn, then for any r = 1, . . . , n,
r∪

j=1

Fj ⪰
r∪

i=1

Ei; (6.3)

(2) if in addition Ei ≃ Ej and Fi ≃ Fj for all i, j ∈ {1, . . . , n}, i.e., if
{Ei}ni=1 and {Fj}nj=1 partition S into n equally probable events, then

r∪
i=1

Ei ≃
r∪

j=1

Fj . (6.4)
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Proof. (1) We prove by induction on r. Note that for the case r = 1, it
must be that F1 ⪰ E1. For, otherwise E1 ≻ F1 ⪰ · · · ⪰ Fn. It follows that
Ei ≻ Fi for all i = 1, . . . , n, and hence

∪n
i=1Ei = S ≻

∪n
i=1 Fj = S (this

is obtained by repeatedly applying the “≻-version” of Corollary 6.5(4) since
Ei’s are mutually disjoint), a contradiction.

In the inductive step, assume that (6.3) holds for r, we show that it
holds for the case r + 1. Suppose, to the contrary, that

∪r
i=1Ei ∪ Er+1 ≻∪r

i=1 Fj∪Fr+1. Then, by the inductive hypothesis,
∪r

i=1 Fj ⪰
∪r

i=1Ei, hence
by Corollary 6.5(5) it must be that Er+1 ≻ Fr+1. It follows that Ei ≻ Fi

for all i = r + 1, . . . , n. This together with
∪r+1

i=1 Ei ≻
∪r+1

i=1 Fj imply that∪n
i=1Ei = S ≻

∪n
i=1 Fj = S via Corollary 6.5(4) , which is impossible.

(2) This is a direct consequence of (1) above. □

Remark 6.8. Kraft et al. (1959) showed, through a counter example, that,
contrary to what de Finetti (1951) had conjectured, the four conditions in Def-
inition 6.1 are insufficient to bring about a numerical representation of ⪰ in the
sense of (5.5) even when |S| is finite. In the same paper they gave the extra
condition that is needed in order that the probable relation be represented by a
numerical probability in finite cases (see also Scott, 1964). We shall not pursue
this direction here. In what follows, we study Savage’s approach to the problem,
which is more general, for it also treats infinite cases.

6.2. Quantitative probability. In this section we show that the qualita-
tive probability relation derived from SVG 1-5 in Theorem 6.4 admits a unique
numerical representation provided that an additional postulate is inserted. That
is, we show that there is a unique probability measure µ on (S,F) such that

E ⪰ F ⇐⇒ µ(E) ≥ µ(F ), for all E,F ∈ F , (6.5)

In this case, we say that the probability measure µ agrees with the qualitative
probability ⪰, and say that µ almost agrees with ⪰ if only the ‘⇒’ direction of
(6.5) holds. The representation rests on the following postulate.

SVG 6. For any f, g ∈ A and for any a ∈ X, if f ≻ g then there is a finite
partition {Pi}ni=1 such that, for all i, ca ⊕Pi f ≻ g and f ≻ ca ⊕Pi g.

The postulate says that if f is strictly preferred to g, then there exists a
partition such that the preferential relation remains the same if f (g) is revised
on the same cell of the partition with any constant act ca. This postulate is
a version of continuity axiom which is structurally similar to vNM 3 and A-
A 3. It amounts to saying that the state space can be arbitrarily divided so
that the revision of an act with respect to a constant act on any member of
the partition is considered as preferentially insignificant. As we shall soon see,
SVG 6 imposes sufficient structural constraint on the system that facilities a
numerical representation.
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6.2.1. Fineness and tightness. As a show of the strength of SVG 6, let us
first make the following observations.

Lemma 6.9. Let ⪰ be a qualitative probability satisfying SVG 6, and E,F be
any events. Suppose that F ≻ E, then there exists a partition {Pi}ni=1(n ≤ ∞)

of S such that F ≻ E ∪ Pi, for all i = 1, . . . , n.

Proof. By Definition 5.4, F ≻ E implies that, for any a, b ∈ X with a ≻ b,
ca ⊕F cb ≻ ca ⊕E cb. Now, in SVG 6 let ca ⊕F cb be in the place of f and let
ca⊕E cb be in that of g, then there exists a finite partition {Pi}ni=1 such that, for
all i,

ca ⊕F cb ≻ ca ⊕Pi

(
ca ⊕E cb

)
.

By Lemma 5.2(3), it follows that

ca ⊕F cb ≻ ca ⊕E∪Pi cb.

Hence, by definition, F ≻ E ∪ Pi. □

Lemma 6.10. Given any two events E and F , if, for any non-null events
G,H satisfying E ∩G = F ∩H = ∅, E ∪G ⪰ F and F ∪H ⪰ E, then E ≃ F .

Proof. Suppose, to the contrary, that there exist E,F such that E ≻ F for
all non-null G,H satisfying E ∩ G = F ∩H = ∅, E ∪ G ⪰ F and F ∪H ⪰ E.
Then by Lemma 6.9 there exists a partition {Pi}ni=1(n ≤ ∞) of S such that
E ≻ F ∪ Pi for all i = 1, . . . , n. For each Pi, if F ∩ Pi ̸= ∅ then split it into
two cells F − Pi and Pi − F , then we can refine partition {Pi}ni=1 with a new
partition {P ′

j}mj=1 such that, for each new cell P ′
j one of the following conditions

holds
F ∩ P ′

j = ∅ or P ′
j ⊆ F. (6.6)

Since each P ′
j is a subset of some Pi, by Lemma 6.3, E ≻ F ∪ Pi implies that

E ≻ F ∪ P ′
j for all j = 1, . . . ,m.

Note that if F ∩ P ′
j = ∅ then P ′

j must be null, for otherwise, by hypothesis, we
have that F ∪P ′

j ≿ E, a contradiction. By (6.6), it follows that the only non-null
cells of {P ′

j}mj=1 are the ones contained in F , then, by Lemma 6.5(3), we have

E ≻ F ⪰ F ∪
∪
j

P ′
j = S

which is impossible. Hence E ̸≻ F . Similarly, it can be shown that F ̸≻ E. □
Note that, in Lemma 6.9, let E = ∅, then we have that, for any F ≻ ∅, there

is a partition of S such that no element of which is as probable as F . In this
case, we say that the qualitative probability ⪰ is fine. The property presented
in Lemma 6.10 is often referred to as the tightness condition of ⪰. The above
shows that both fineness and tightness are guaranteed if SVG 6 is in place.
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6.2.2. Savage’s triples. Next we show some further consequences of SVG 6.
These properties reveal some fine structures of the qualitative probability ⪰
under SVG 1-SVG 6.

Lemma 6.11. Let E,F,G,H,K be events, the following properties hold:
(1) if E ≻ ∅ then E can be partitioned into G,H where G,H ≻ ∅;
(2) if E,K,F are pairwise disjoint with E ∪ K ≻ F ⪰ E, then K can be

partitioned into G,H such that E ∪H ≻ F ∪G;
(3) if E,F are such that E,F ≻ ∅ and E∩F = ∅ then F can be partitioned

into G,H for which E ∪G ⪰ H ⪰ G.

Proof. (1) By SVG 6, there exists some partition {Pi} such that E ≻ Pi,
and hence, by Lemma 6.3, E ≻ E ∩ Pi for all i = 1, . . . , n. Suppose that
E ∩ Pi ≃ ∅ for all i’s, then by Corollary 6.5(2), E ≃ ∅, a contradiction.
Suppose that there is only one Pi such that E ∩ Pi ̸≃ ∅, then we have
E ≃ E ∩ Pi, again, a contradiction. Hence there are at least two cells Pi, Pj

such that E ∩ Pi ̸≃ ∅, E ∩ Pj ̸≃ ∅, in which case let G = E ∩ Pi and
H = E −G.

(2) From the assumption E ∪K ≻ F ⪰ E it is easy to see, via Corollary 6.5(2),
that K ≻ ∅. By SVG 6, there exists a n-partition {Pi} such that E ∪K ≻
Pi ∪ F for all i’s and that there must be one cell, say Pi, of the partition
such that K ∩ Pi ≻ ∅, then we have E ∪K ≻ (K ∩ Pi) ∪ F . Next, by (1),
K ∩ Pi can be partitioned into G,G′ with G′ ⪰ G, then we have

E ∪
[
(K −G) ∪G

]
= E ∪K ≻ (K ∩ Pi) ∪ F = G′ ∪G ∪ F.

This yields E∪(K−G) ≻ G′∪F ⪰ G∪F (because G′ ⪰ G). Let H = K−G,
then we get what we want.

(3) If E ⪰ F , by (1), F can be partitioned into G,H ≻ ∅ with H ⪰ G, in which
case the claim follows trivially. Otherwise, F ≻ E ≻ ∅, then by SVG 6,
there exists a n-partition {Pi} such that E ≻ Pi and hence E ≻ Pi ∩ F for
i = 1, . . . , n. Rename Pi ∩ F ’s as Qi’s and let latter be arranged such that
Q1 ⪯ Q2 ⪯ · · · ⪯ Qn. Next, let m be such that

m∪
i=1

Qi ⪯
n∪

i=m+1

Qi ⪯
m+1∪
i=1

Qi (6.7)

The existence of such an m is guaranteed by the assumption on {Qi} and
the fact that ⪰ is a qualitative probability. Then let G =

∪m
i=1Qi and

H =
∪n

i=m+1Qi. Then (6.7) yields G ⪯ H ⪯ G ∪ Qm+1. Since E ∩ F = ∅
and E ≻ Qm+1 we get E ∪G ⪰ Qm+1 ∪G ⪰ H. □
The existence of a numerical probability over events depends on the following

construction, which is sometimes referred to as Savage triples.

Lemma 6.12. There exists a sequence of 3-fold partitions {Cn, Gn, Dn}∞n=1

of the state space S satisfying
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(1) Cn ∪Gn ∪Dn = S;
(2) Cn ∪Gn ⪰ Dn and Dn ∪Gn ⪰ Cn;
(3) Cn ⊆ Cn+1, Dn ⊆ Dn+1, and Gn ⊇ Gn+1;
(4) Gn −Gn+1 ⪰ Gn+1.

Proof. By Lemma 6.11(1), S can be partitioned into E,F ≻ ∅. Assume,
WLOG, that F ⪰ E (otherwise, relabel the two events), then, by Lemma 6.11(3),
F can be further partitioned into H,G such that E ∪G ⪰ H ⪰ G. Let C1 = E,
G1 = G, and D1 = H. Then we have, for the case n = 1,

C1 ∪G1 ∪D1 = E ∪ (G ∪H) = E ∪ F = S,

C1 ∪G1 = E ∪G ⪰ H = D1

D1 ∪G1 = (G ∪H) = F ⪰ E = C1.

(6.8)

Next, consider the following cases

a. If G1 ≃ ∅ we have, via Corollary 6.5(2), C1 ≃ D1 then it is plain that the
claim is proved if we let Cn = C1 and Dn = D1 for all n’s.

b. If G1 ≻ ∅, we consider two subcases:
i. If C1 ∪ G1 ⪯ D1, then we have, via (6.8), that C1 ∪ G1 ≃ D1. Apply

Lemma 6.11(3) to C1 and G1, we have that G1 can be partitioned into
H,G such that C1 ∪G ⪰ H ⪰ G. In this case let C2 = C1 ∪H, G2 = G,
and D2 = D1, then we have

C2 ∪G2 ∪D2 = (C1 ∪H) ∪G ∪D1 = C1 ∪G1 ∪D1 = S

C2 ⊇ C2, G2 ⊆ G1, D2 ⊇ D1,

C2 ∪G2 = (C1 ∪H) ∪G = C1 ∪G1 ≃ D1 = D2,

D2 ∪G2 = D1 ∪G ≃ C1 ∪G1 ⪰ C1 ∪H = C2,

G1 −G2 = H ⪰ G = G2.

(6.9)

ii. Now suppose C1 ∪ G1 ≻ D1, also, from (6.8), we have D1 ∪ G1 ⪰ C1.
For the latter, if D1 ∪ G1 ≃ C1 then we are back to the previous case,
otherwise we have C1 ∪ G1 ≻ D1 and D1 ∪ G1 ≻ C1. WLOG, assume
that C1 ⪰ D1, apply Lemma 6.11(2), we have that G1 can be partitioned
into H ′, G′ such that D1 ∪H ′ ⪰ C1 ∪G′. Further, by Lemma 6.11(3), H ′

can be partitioned into H,G such that G′ ∪H ⪰ G ⪰ H. In this case, let
C2 = C1 ∪G′, G2 = G, and D2 = D1 ∪H, then we have

C2 ∪G2 ∪D2 = (C1 ∪G′) ∪G ∪ (D1 ∪H) = S

C2 ⊇ C2, G2 ⊆ G1, D2 ⊇ D1,

C2 ∪G2 = C1 ∪G′ ∪G ⪰ D1 ∪G ⪰ D1 ∪H = D2,

D2 ∪G2 = D1 ∪H ∪G = D1 ∪H ′ ⪰ C1 ∪G′ = C2,

G1 −G2 = G′ ∪H ⪰ G = G2.

(6.10)

Repeat the above procedure for all n ≥ 2, then we get what we want. □
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6.2.3. Partition with equiprobable events. One crucial step towards numerical
probabilities is to show that, under SVG 1-6, the state space can be arbitrarily
partitioned into equally probable events.

Lemma 6.13. Let ⪰ be a qualitative probability satisfying SVG 6, then S

can be partitioned into 2n (n < ∞) many equiprobable events.

Proof. By Lemma 6.12, there exists a sequence of Savage-triples {Cn, Gn, Dn}.
Then, for any event E ≻ ∅, we have that E ⪰ Gn when n is large. For, other-
wise, Gn ≻ E for all n. In this case let {Pi}mi=1 be an m-fold partition of S such
that E ≻ Pi (i = 1, . . . ,m) (the existence of such a partition is guaranteed by
Lemma 6.9). We have Gn ≻ Pi, for each i. Then, from conditions (3) and (4)
above,

G1 −G2 ⪰ · · · ⪰ Gn−2 −Gn−1 ⪰ Gn−1 ⪰ Gn−1 −Gn ⪰ Gn ≻ Pi

By the ‘≻-version’ of Corollary 6.5(4), it follows that G1 = (G1 − G2) ∪ · · · ∪
(Gn−1−Gn)∪Gn ≻

∪
i Pi = S, which is impossible. Hence E ⪰ Gn. Then from

this we conclude, via Lemma 6.3, that

E ⪰
∩
n

Gn for any E ≻ ∅. (6.11)

Now suppose that
∩

nGn ≻ ∅, then there exists a partition {Pi}mi=1 of S such
that

∩
nGn ≻ Pi for all i. Further let some Pj in the partition be such that

Pj ≻ ∅ (such an Pj must exist, otherwise we have S =
∪

i Pi ≃ ∅, which is
impossible). But observe that if in (6.11) we let E = Pj , then it follows that
Pj ⪰

∩
nGn ≻ Pj , a contradiction. Hence

∩
nGn ⪯ ∅.

Now take S1 =
∪

nCn and S2 =
∪

nDn ∪
∩

nGn. By Lemma 6.5(2) and the
conclusion that

∩
Gn ⪯ ∅, we have that S1 ≃ S2 via condition (2) above. Hence

{S1, S2} equally partitions S. Apply the above procedure to S1 and S2, and so
on. Therefore, S can be partitioned into 2n equivalent events for any n. □

Theorem 6.14. Let ≿ and ⪰ be defined as above, then if ≿ satisfies SVG 1-
6, there exists a unique (finitely additive) probability measure µ that represents
⪰:

E ⪰ F ⇐⇒ µ(E) ≥ µ(F ). (6.12)

Proof. We proceed in following steps.

(1) By Lemma 6.13, for any large n ≤ ∞ in the form of 2m for some m, there
exists a partition {Ei}ni=1 of S such that Ej ≃ Ek for all j, k ∈ {1, . . . , n}.
Let µ(·) be a real-valued function such that for each Ei

µ(Ei) =
1

n
i = 1, 2, . . . , n. (6.13)
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Now fix an event B, let r be the largest integer such that the union of r-many
Ei’s is not more probable than B, that is,

r+1∪
i=1

Ei ≻ B ⪰
r∪

i=1

Ei. (6.14)

Note that, for any fixed B, this integer r depends on n. However, as shown
in Corollary 6.7(2), it is independent of the choice of n-fold partition of S.
Let us denote r by a function k(B,n), we show that

{
k(B,i)

i

}∞

i=1
is a Cauchy

sequence. To this end, suppose that F1, . . . , Fm is an m-fold equal partition
of S and t is the largest integer such that

∪t+1
j=1 Fj ≻ B ⪰

∪t
j=1 Fj . Apply

Lemma 6.13 again, we have that each Ei(1 ≤ i ≤ n) and Fj(1 ≤ j ≤ m) can
be further partitioned, respectively, into m and n equally probable events,
i.e., Ei =

∪m
j=1Eij and Fj =

∪n
i=1 Fij , where Eij and Fji are cells in the

refined nm-fold equal partitions, then we have that
t+1∪
j=1

n∪
i=1

Fji =

t+1∪
j=1

Fj ≻ B ⪰
r∪

i=1

Ei ⪰
r−1∪
i=1

Ei ⪰
r−1∪
i=1

m∪
j=1

Eij .

Then, Corollary 6.7 implies that

(r − 1)m ≤ (t+ 1)n. (6.15)

Here, by definition, k(B,n) = r and k(B,m) = t, then (6.15) yields∣∣∣∣k(B,m)

m
− k(B,n)

n

∣∣∣∣ ≤ 1

n
+

1

m
< ε,

where ε is an arbitrarily small number. The second inequality is met when
m and n are sufficiently large. Hence, it is meaningful to define µ(B) by

µ(B) =Df lim
n→∞

k(B,n)

n
. (6.16)

(2) We need to verify that µ(·) defined in (6.13) is a (finitely additive) probability
measure, that is, µ satisfies the following conditions: for any E,F ,
(a) µ(E) ≥ 0;
(b) if E ∩ F = ∅, then µ(E ∪ F ) = µ(E) + µ(F );
(c) µ(S) = 1.

Condition (a) and (c) can be easily verified. To show condition (b), let
{Pi}ni=1 be an n-fold equal partitions of S, and let r = k(E, n), t = k(F, n),
and u = k(E ∪ F, n). Since E ∩ F = ∅, by Corollary 6.5(4) and (6.14),

u+1∪
i=1

Pi ≻ E ∪ F ⪰
r∪

i=1

Pi ∪
t∪

j=1

Pj (6.17)

Note that (6.17) hold even when the Pi’s and Pj ’s on the right hand side are
disjoint, and hence

∪u+1
i=1 Pi ⪰

∪r+t
j=1 Pj . It follows that r+ t ≤ u+1. On the
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other hand,
r+t+2∪
i=1

Pi ≻ E ∪ F ⪰
u∪

i=1

Pi (6.18)

This shows u ≤ r+ t+ 2 (To see the first inequality, note that otherwise we
have E∪F ⪰

∪r+1
i=1 Pi∪

∪t+1
i=1 Pi, then by Corollary 6.5(5), either E ⪰

∪r+1
i=1 Pi

or F ⪰
∪t+1

i=1 Pi. But neither case is possible). Hence
k(E, n)

n
+

k(F, n)

n
− 1

n
≤ k(E ∪ F, n)

n
≤ k(E, n)

n
+

k(F, n)

n
+

2

n
.

Let n → ∞ we obtain that µ(E∪F ) = µ(E)+µ(F ), which is what we want.
(3) Finally, we show that µ defined in (6.16) is unique. Consider otherwise,

then let µ′ be another probability measure on S such that (6.5) holds. It
follows, via (6.14), that k(B,n)

n ≤ µ′(B) ≤ k(B,n)+1
n . Now let n → ∞, we get

µ′(B) = limn→∞
k(B,n)

n = µ(B). This shows uniqueness. □
One feature of the probability measure µ derived in the theorem above is that

µ is atomless. That is, as the following corollary shows, it allows for partitions
of the state space into sets of arbitrarily small probability.11

Corollary 6.15. Given the probability measure µ on S obtained above, for
any B ⊆ S and 0 ≤ ρ ≤ 1, there exists C ⊆ B such that µ(C) = ρµ(B).

Proof. The proof is trivial if B is null. Now assume that µ(B) = p > 0. By
Lemma 6.13 and Theorem 6.14, for any large n in the form of 2m, there exists a
partition

{
Ei

}n
i=1

of B and unique probability measure µ on S for which

µ
(
Ei

)
=

p

n
for all i = 1, . . . , n

Now, let r be the largest number such that
(r + 1)

n
> ρ ≥ r

n
.

Define An, Bn by

An =
r∪

i=1

Ei, Bn =
r+1∪
i=1

Ei.

Then we have
µ
(
Bn

)
=

p(r + 1)

n
> pρ ≥ pr

n
= µ

(
An

)
.

By Theorem 6.14, µ
(
An

)
= µ

(
Bn

)
= pρ as n → ∞. Define C = limn→∞An.

Then we have that µ(C) = ρµ(B). □

Remark 6.16. Intuitively, Corollary 6.15 says that, for any event B receiving
non-zero probability under µ, B can be infinitely and continuously divided. As
a consequence of this feature, the state space S in Savage’s decision model must
contain uncountably many states. This, however, sets a limit to application of

11See also Savage (1972, p. 34) and Fishburn (1970, p. 199).
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Savage’s theory: it cannot be applied to cases with a finite or countable state
space.

7. Personal Utility

7.1. Utilities for simple acts. Next, we seek to construct a utility func-
tion for acts. This was approached by Savage in two steps. First, he considers
a special set of simple acts, or gambles in his terminology, which are acts that
potentially lead to only finitely many possible consequences, for which a von
Neumann-Morgenstern utility function (vNMU) over consequences can be de-
rived. The latter together with the derived subjective probability µ above give
rise to a utility measure U0 of simple acts. He then extends this utility for
simple acts to general acts which can lead to potentially infinitely many conse-
quences. The exposition here follows Savage’s original approach, in Chapter ??
we will provide an alternative method of deriving utilities without appealing to
constant-acts.

Let us start with a close examination of relationship between gambles and
the class of lotteries as introduced in §2.3.

Definition 7.1 (Gambles). An act f ∈ XS is said to be simple if there exist

(i) a n-partition {Pi}ni=1 of S, and
(ii) a finite sequence of consequences x1, x2, . . . , xn such that f(s) = xi for

all s ∈ Pi (i = 1, . . . , n).

Denote the set of all simple acts by A0, we also refer to simple acts as gambles.
It is plain that all constant acts cx(x ∈ X) are gambles/simple acts. Using our
notation for compound acts, a gamble f ∈ A0 can be conveniently expressed by

f = cx1 ⊕P1

(
cx2 ⊕P2

(
cx3 ⊕P2 (· · · ⊕Pn−1 cxn) · · ·

))
. (7.1)

7.1.1. Lotteries introduced by gambles. Now, given the subjective probabil-
ity µ on S derived from Theorem 6.14, each gamble f ∈ A0 defines a simple
probability measure on X, written pf , as follows

pf (xi) =

µ[f(s) = xi] if xi ∈ f(S),

0 if xi ∈ X − f(S);
(7.2)

where µ[f(s) = xi] = µ
{
s ∈ S | f(s) = xi} and f(S) denotes the range of f (cf.

§2.1). We refer to pf as the lottery on X introduced by gamble f .
Recall that L∗

X is the set of simple probability measures defined on (an
infinite) X (see Definition 2.8). Thus each f ∈ A0 corresponds to a simple
probability measure in the extended lottery space L∗

X . Observe that two different
gambles may introduce the same lottery. Take, for instance, E,EC be a partition
of S for which µ(E) = µ(EC) = 1/2 and let f, g be two acts defined in the table
below.



7. PERSONAL UTILITY 43

E EC

f x1 x2
g x2 x1

Then, we have an example where f ̸= g, yet, by (7.2), pf = pg. That is, f

and g induce the same lottery. We show in the following lemma that this is
the case only if f ∼ g. Intuitively, the lemma says that a pair of simple acts
are considered equally preferable if the probabilities of getting each consequence
under either one of the two acts are the same. As we shall soon see, this is a
crucial step moving towards the full expected utility theory.

Lemma 7.2. For any gambles f, g ∈ A0, if pf = pg then f ∼ g.

Proof. We consider only the case where f(S) = g(S). For if f(S) ̸= g(S),
that is, if there is some x0 ∈ X such that, say, x0 ∈ f(S) but x0 /∈ g(S),
then, by the assumption that pf = pg and (7.2), we have µ[f(s) = x0] = 0.
In this case, we can construct an act f ′ which differs from f only on the null
set E0 = {s | f(s) = x0} (and hence f ′ ∼ f by Lemma 5.10(3)) such that
f ′(S) = f(S) − {x0}. Repeat this process until we reach some f∗ and g∗ such
that f∗ ∼ f, g∗ ∼ g and f∗(S) = g∗(S).

Now let D = f(S) = g(S). The lemma is proved by induction on the size
of D. Suppose that |D| = 1, then f, g are constant acts and f = g, and hence
f ∼ g. For the inductive step, assume that claim holds for n− 1, we show that
it also holds when |D| = n. To this end, let x1, x2, . . . , xn be an enumeration of
the consequences in D, and let {Pi}ni=1 and {Qi}ni=1 be partitions of S such that

f(s) = g(t) = xi for all s ∈ Pi and t ∈ Qi (i = 1, . . . , n). (7.3)

We proceed with the following two possibilities:

(1) If for some j, Pj and Qj are null events. It follows that µ(Pj) = µ(Qj) = 0,
and hence µ[f(s) = xj ] = µ[g(t) = xj ] = 0. In this case, let r be such that
Pr, Qr are non-null. Then construct new gambles f ′ and g′ as follows

f ′(s) =

xi if s ∈ Pi and i /∈ {j, r}

xr if s ∈ Pj ∪ Pr

; and

g′(s) =

xi if s ∈ Qi and i /∈ {j, r}

xr if s ∈ Qj ∪Qr

.

That is to say, f ′ agrees with f on all cells of the partition {Pi}ni=1 except
for the null cell Pj , in which f(s) = xj but f ′(s) = xr, same for g and g′.
By Lemma 5.10(2), we have that,

f ≿ g ⇐⇒ f ′ ≿ g′.
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Table 7.1

P1 P2

Q1 A D
Q2 C B

f
x1 x2
x1 x2

g
x1 x1
x2 x2

From the construction of f ′ and g′ it is easily seen that they are gambles
with n − 1 partitions and that f ′(S) = g′(S) = D − {xj}. Then by the
inductive hypothesis f ′ ∼ g′, and hence f ∼ g.

(2) The remaining case is that Pi, Qi are not null for all i = 1, . . . , n. We deal
with this case in yet another two steps:
(a) As an illustration, consider the simple situation where n = 2. In this

case we have that X = {x1, x2} and that {P1, P2} and {Q1, Q2} are
partitions of S for which

f(s) = g(t) = xi for all s ∈ Pi, t ∈ Qi (i = 1, 2) (7.4)

µ(P1) = µ(Q1), µ(P2) = µ(Q2). (7.5)

We want to show that f ∼ g. To this end, let A = P1 ∩ Q1, B =

P2 ∩ Q2, C = P1 ∩ Q2, D = P2 ∩ Q1, then (7.4) can be represented in
Table 7.1. (for instance, f(s) = x1 if s ∈ A or s ∈ C). Next construct
f ′ and g′ which agree, respectively, with f and g on C and D and with
each other on A and B. Then by the sure-thing principle (P2) f ≿ g iff
f ′ ≿ g′. It is hence sufficient to show that f ′ ∼ g′.

A B C D
f x1 x2 x1 x2
g x1 x2 x2 x1
f ′ x2 x2 x1 x2
g′ x2 x2 x2 x1

f ′

x2 x2
x1 x2

g′

x2 x1
x2 x2

Note that (7.5) implies µ(C) = µ(D), then, by Theorem 6.14, it must
be

C ≃ D (7.6)

One the other hand, f ′ and g′ can be written as

f ′ = cx1 ⊕C cx2 , (7.7)

g′ = cx1 ⊕D cx2 . (7.8)

By Definition 5.4, (7.6)-(7.8) imply that f ′ ∼ g′.
(b) In general, let {Pi}ni=1 and {Qi}ni=1 be the partitions of S with respect

to f and g satisfying (7.3). Let B = Pn ∩ Qn, C = Qn − Pn and D =

Pn − Qn. By assumption, µ(Qn) = µ(Pn). This implies that µ(C) =

µ(D). We consider only the nontrivial case where µ(C) = µ(D) > 0.
Further, C can be partitioned such that Ci = Qn∩Pi (i = 1, . . . , n−1).
And it is clear f(s) = x1 for all s ∈ Ci (i = 1, . . . , n − 1). Next, let
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µ(C1)/µ(C) = ρ1, then by Corollary 6.15, there exists some D1 ⊆ D for
which µ(D1)/µ(D) = ρ1, and hence µ(C1) = µ(D1). It is easy to see
that, by repeatedly applying Corollary 6.15, D can be partitioned into
D1, . . . , Dn−1 for which

µ(Ci) = µ(Di), i = 1, . . . , n− 1. (7.9)

Table 7.2

P1 P2 · · · Pn

D1

D2
...

Qn C1 C2 · · · B

f
D1

D2
...

Qn x1 x2 · · · xn

Now construct an act h1 such that it agrees with f on all parts of S

except for C1 and D1 for which

h1(s) =


xn if s ∈ C1,

x1 if s ∈ D1,

g(s) otherwise.

Since µ(C1) = µ(D1), using a similarly argument given in part (a)
above, we conclude that h1 ∼ f . Repeat this process inductively we
have that

hi+1(s) =


xn if s ∈ C2,

xi+1 if s ∈ D2,

hi(s) otherwise,

(i < n− 1).

From the construction hi’s we have that hn−1(s) = xn for all s ∈ Ci

(i = 1, . . . , n− 1) and hn−1 ∼ f.

h1
x1
D2
...

Qn xn x2 · · · xn

⇒ · · · ⇒

hn−1

x1
x2
...

Qn xn xn · · · xn

The proof is completed if we show that hn−1 ∼ g. To this end, note
that hn−1 agrees with g on Qn, and hence hn−1 ∼Qn g. In S−Qn, there
are only n−1 many elements, then by the construction of hn−1 and the
inductive hypothesis we have that hn−1 ∼S−Qn f ∼S−Qn g. Together,
we have hn−1 ∼ g, which is what we want. □

7.1.2. Gambles introduced by lotteries. Conversely, each lottery p ∈ L∗
X can

be associated with a gamble. To see this, let x1, x2, . . . , xn be an enumeration
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of the members of X that are in the support of p, as defined in (2.18), and let
{Pi}ni=0 be a partition of S such that

µ(Pi) =

0 i = 0,

p(xi) i = 1, . . . , n.
(7.10)

Note that the existence of such a partition is guaranteed by the fact that, by
Lemma 6.13, S can be partitioned into arbitrarily fine equal-probable events
and that µ is a well defined finitely additive probability measure on S for which
Corollary 6.15 holds. Now, given p and the corresponding {Pi}ni=0, define fp as
follows

fp(s) =

x s ∈ P0,

xi s ∈ Pi (i = 1, . . . , n),
(7.11)

where x is an arbitrary consequence that is not in the support of p. We refer
to fp as a gamble introduced by lottery p. The following observation says that,
given any lottery q, let fq be a gamble introduced by q as defined above, then
the introduced lottery by fq is equal to q. The proof is immediate from (7.2)
and (7.11), and hence omitted.

Lemma 7.3. For any q ∈ L∗
X , pfq = q.

It shall be emphasized that, for any simple act g ∈ A0, it is in general not
the case that fpg = g. As the the following example illustrates, this is due to the
fact that, in general, more than one gambles can be associated with the same
lottery.

Example 7.4. Let X = {x1, x2, x3} and p be such that p(x1) = p(x2) = 0

and p(x3) = 1. Construct f and g to be such that {P1, P2, P3} and {Q1, Q2, Q3}
are their respective partitions of S for which µ(P3) = µ(Q3) = 1. By definition,
both f and g are gambles introduced by p, but f ̸= g.

P1 P2 P3

f x1 x1 x3

Q1 Q2 Q3

g x2 x2 x3

However, in the light of Lemma 7.2 and Lemma 7.3, we note that all gambles
introduced from the same lottery are equally preferable under ≿. It follows that
each lottery p ∈ L∗

X can be identified with a class of equally preferable gambles
introduced by p, which are ordered under the given preference ≿ on A.12 For
each p, let fp be a representative of the associated equivalence class (under ≿),
then a preference relation L∗

X can be induced as follows: for any p, q ∈ L∗
X ,

p ≿ q if fp ≿ fq. (7.12)
12 Savage (1972, p. 71) uses

∑
i ρifi to denote the class of simple acts for which, to use his

notations, there exist partitions Bi of S such that P (Bi) = ρi and f(s) = fi for s ∈ Bi. He
further remarks that if a simple act f is such that “the consequences fi will befall the person
in case Bi occurs, then the value of f is independent of how the partition Bi is chosen.”
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We show that this induced preference on L∗
X satisfies von Neumann-Morgenstern

axioms (cf. Remark 2.4).

Lemma 7.5. If preference relation ≿ on A satisfies SVG 1-6, then the induced
ordering on L∗

X in (7.12) satisfies the following conditions:
(1) ≿ is a complete preference relation;
(2) For all p, q, r ∈ L∗

X and λ ∈ (0, 1], p ≻ q if and only if p⊕λ r ≻ q ⊕λ r;
(3) For any p, q, r ∈ L∗

X , if p ≿ r ≿ q and p ≻ q, then there exists a unique
α ∈ [0, 1] such that r ∼ p⊕α q.

Proof. (1) This is immediate from (7.12) and SVG 1.
(2) By the definition of induced preference in (7.12), it is sufficient to show that

the introduced gambles satisfy

fp ≻ fq if and only if fp⊕λr ≻ fq⊕λr. (7.13)

To this end, let {Pi}mi=0, {Qj}rj=0, {Rk}nk=0 be partitions of S with respect
to fp, fq, fr, respectively, for which (7.10) and (7.11) are satisfied. By Corol-
lary 6.15, construct Eik ⊆ Pi ∩Rk such that µ(Eik) = λµ(Pi ∩Rk). Further,
let Eik = (Pi ∩Rk)−Eik, and hence µ(Eik) = (1− λ)µ(Pi ∩Rk). It follows
that

µ
(∪

k

Eik

)
= λµ

(
Pi

)
and µ

(∪
i

Eik

)
= (1− λ)µ(Rk). (7.14)

It is plain that {Eik, Eik}ik forms a finer partition of S. Define a gamble f1

to be such that

f1(s) =

xi if s ∈ Eik

xk if s ∈ Eik

,

where xi is in the support of p and fp(s) = xi for s ∈ Eik ⊆ Pi and similarly,
xk is in the support of r and fr(s) = xk for s ∈ Eik ⊆ Rk. Now let pf1 be
the lottery introduced by f1, then, by (7.14), for any xi ∈ X,

pf1(xi) = µ
[
f1(s) = xi

]
= µ

[∪
j

Eij ∪
∪
j

Eji

]
= λµ

(
Pi

)
+ (1− λ)µ

(
Ri

)
= λp(xi) + (1− λ)r(xi)

= (p⊕λ r)(xi).

(7.15)

By Lemma 7.3, pfp⊕λr = p⊕λr, it follows that pf1 = pfp⊕λr , hence f1 ∼ fp⊕λr

via Lemma 7.2.
Similarly, construct Fjk ⊆ Qj ∩Rk such that µ(Fjk) = λµ(Qj ∩Rk), and

let F jk = (Qj ∩Rk)−Fjk. Then {Fjk, F jk}jk partitions S. Define a gamble
f2 to be such that

f2(s) =

xj if s ∈ Fjk

xk if s ∈ F jk

.



48 II. SAVAGE’S SUBJECTIVISM

We have that pf2 = q⊕λ r = pfq⊕λr , and hence f2 ∼ fq⊕λr. Thus, by SVG 1,
(7.13) is proved if it can be shown that fp ≻ fq if and only if f1 ≻ f2.

Observe that, by (7.15), for any xi ∈ X, f1(s) = xi implies s ∈ Pi ∪ Ri

and, similarly, f2(s) = xi only if s ∈ Qi ∪ Ri. Further, since fp, fq, fr

satisfy (7.11), construct two sequences of gambles h1, . . . , hn and h′1, . . . , h
′
n

as follows

h1 = fp ⊕RC
1
fr and h′1 = fq ⊕RC

1
fr (7.16)

hi+1 = hi ⊕RC
i+1

fr and h′i+1 = h′i ⊕RC
i+1

fr (7.17)

From the constructions of f1, f2,, it is easy to see that f1 = hn and f2 = h′n.
Finally, by the sure-thing principle, (7.16) and (7.17) imply that

h1 ≻ h′1 ⇐⇒ fp ≻ fq

hi+1 ≻ h′i+1 ⇐⇒ hi ≻ h′i

Therefore, f1 ≻ f2 if and only if fp ≻ fq, which is what we want.
(3) This claim can be similarly proved. □

By Theorem 2.10, if the induced preference ≿ on L∗
X satisfies vNM axioms,

then there exists a vNMUF u for all the consequences in X, and hence an expected
utility function U0 for gambles such that, for each f ∈ A0,

U0[f ] =
∑
x∈X

µ[f(s) = x]u(x) =

∫
S
u
[
f(s)

]
dµ(s). (7.18)

Thus, Lemma 7.5 and (7.18) lead to the following theorem.

Theorem 7.6. Let S be a set of states, X be a set of consequences, ≿ be a
preference over the set of acts A = XS , and let A0 ⊆ A be the set of gambles,
then, if ≿ satisfies SVG 1-6, there exists a utility function U0 such that, for any
f, g ∈ A0,

f ≿ g ⇐⇒ U0[f ] ≥ U0[g],

where U0[f ] =
∫
u
[
f
]
dµ.

The next order of business is to extend the utility function obtained in The-
orem 7.6 for simple acts to that for general acts, namely, to relax the restriction
that acts being considered have only finitely many possible consequences, which
will be the subject of the next subsection. Before moving on, we show that, for
any general act g, if g is bounded by two simple acts then there exits a simple
act/gamble that is equally preferable to g.

Corollary 7.7. Let f1, f2 ∈ A0 satisfying f1 ≻ f2, and g ∈ A. If f1 ≿ g ≿
f2, then there exists a g0 ∈ A0 such that g0 ∼ g.

Proof. Our proof here parallels the proof of Lemma 2.3(4). In the notation
of (7.2) and (7.11), let pf1 and pf2 be the lotteries induced by f1, f2, and fpf1⊕λpf2

is a gamble introduced by some mixer of pf1 and pf2 . Consider the following two
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sets
A : =

{
x ∈ [0, 1]

∣∣ fpf1⊕xpf2
≿ g
}
;

B : =
{
x ∈ [0, 1]

∣∣ g ≿ fpf1⊕xpf2

}
.

(7.19)

Let α∗ = inf A and α∗ = supB. Note that, for any a > α∗, there must exist
some a′ ∈ A such that a > a′ ≥ α∗. Then by Lemma 7.5(2) and Lemma 2.3(3),
fpf1⊕apf2

≻ fpf1⊕a′pf2
≿ g. This means

a > α∗ =⇒ a /∈ B. (7.20)

The contrapositive of (7.20) says that, for any a, a ∈ B implies that α∗ ≥ a, in
other words, α∗ is an upper bound of B. and hence α∗ ≥ α∗. Similarly, one can
show that, for any a,

α∗ > a =⇒ a /∈ A (7.21)
which leads to α∗ ≥ α∗. Now define α = α∗ = α∗. It can be similarly shown, by
applying SVG 6, that it cannot be that α /∈ A∩B. Finally, define g0 = fpf1⊕αpf2

,
we have g0 ∼ g. □

7.2. Postulate 7 and utility extension. To extend the utility for simple
acts to acts in general, Savage brought in one final postulate.

SVG 7. For any event E ∈ F , if f ≿E cg(s) for all s ∈ E then f ≿E g.

The postulate says that, for any event E, if the conditional preference of f
given E is no less preferable to any of the constant acts constructed from the
possible consequences of g under each state in E, then f is weakly preferred to
g given E. As seen, this postulate uses constant acts in a systematic way can
be troublesome due to the issue of the applicability of the notion of constant
acts. For the time being, let us focus on the following structural development
of utility extension. Savage (1972, p. 78) first demonstrated that SVG 7 is not
derivable from the first six postulates. This was done by constructing a model
which satisfies all of SVG 1-6 but fails SVG 7.

Example 7.8. Let S = N+ and X = [0, 1) be the set of consequences, and λ

be the finitely but not countably additive measure on positive integers given in
Example A4.7. For any act f , let U [f ] =

∫
S u(f)dλ where u(x) = x is a utility

function on X and V [f ] = limϵ→0 λ[f(s) ≥ 1− ϵ], and let

W [f ] =U [f ] + V [f ]

=

∫
S
u(f(s))dλ(s) + lim

ϵ→0
λ[f(s) ≥ 1− ϵ]

(7.22)

Define f ≿∗ g to mean that W [f ] ≥ W [g]. It is not difficulty to verify that the
defined ≿∗ satisfies SVG 1-6.13 Note that for any act g with a finite range, i.e.
a gamble, V [g] = 0, in this case W [g] = U [g] is a utility function like the one

13See Example 2.1 (and Lemma 1 & 2) in Seidenfeld and Schervish (1983).
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given in Theorem 7.6. To see SVG 7 is violated, let f, g be such that

f(x) =

1− 1/x if x is even
0 if x is odd

and g(x) = max
{
3/4, f(x)

}
.

Then it is easy to calculate that

W [f ] =
1

2
+

1

2
= 1, and W [g] =

(1
2
+

1

2
· 3
4

)
+

1

2
=

11

8
.

Hence f ≺∗ g by the definition of ≿∗ in terms of W [·] above. On the other hand,
for any s ∈ S, we have g(x) < 1. This means that, for the constant act cg(s),
W [cg(s)] < 1, and hence f ≻∗ cg(s), from which we conclude that f ≿∗ cg(s) for
all s ∈ S, but this contradicts SVG 7 (taking E = S). �

Savage then showed that with SVG 7 the utility function U0 for simple acts
can be extended to a utility function U for general acts. To this end, we first
prove the following lemmas.

Lemma 7.9. For any event E, if, for every consequence a ∈ X, f ≿ ca and
g ≿ ca, then f ∼ g.

Proof. The lemma is proved by simple applications of SVG 7. □

Lemma 7.10. For any f ∈ A, if there exists some a ∈ X and c < ∞ such
that ca ≿ f and u

(
f(s)

)
≤ c for all s ∈ S, then there exists some gamble g0 ∈ A0

for which
g0 ≿ f and U0[g0] ≤ c, (7.23)

where u, U0 are as in Theorem 7.6.

Proof. Suppose that u(a) ≤ c, then we can define g0 = ca. Otherwise,
u(a) > c, in this case, fix any t ∈ S and let f(t) = b ∈ X, we have, by the
hypothesis, u[f(t)] = u

(
b
)
≤ c. Let p∗ be a probability mixer of a and b such

that
p∗(a)u(a) + (1− p∗(b))u(b) = c.

Let E,EC be a partition of S such that µ(E) = p∗(a) and µ(EC) = p∗(b), and
define a gamble g0 to be such that

g0(s) =

a if s ∈ E

b if s ∈ EC

From the construction, we have U0[g0] = c. Further, for any s ∈ S, we have
U0[cf(s)] ≤ c, and hence, by Theorem 7.6, g0 ≥ cf(s). That is, g0 ≥ cf(s) for all
s ∈ S then, by SVG 7, g0 ≿ f . □

A small change of the proof above lead to the following corollary.

Corollary 7.11. For any f ∈ A and for any event E, if there exists some
a ∈ X and c < ∞ such that ca ≿E f and u

(
f(s)

)
≤ c for all s ∈ E, then there
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exists some gamble g0 ∈ A0 for which

g0 ≿E f and U0[g0] ≤ c. (7.24)

Lemma 7.12. Let {Pi}ni=1 be a partition of S and c1, . . . , cn < ∞. Then, for
any act f ∈ A, if there is a gamble h0 ∈ A0 such that f ≿ h0 and u

(
f(s)

)
≤ ci

for all s ∈ Pi, then

U0[h0] ≤
n∑

i=1

ciµ(Pi). (7.25)

Proof. We consider the following two cases:
(1) If, for each Pi, there is some ai such that cai ≿Pi f . Then, by Corollary 7.11,

there exists some gi for which

gi ≿Pi f and U0[gi] ≤ ci for all i = 1, . . . , n.

Define g0 to be such that g0(s) = gi(s) if s ∈ Pi. Then we have g0 ≿ f ,
hence g0 ≿ h0. Since both h0 and g0 are gambles, by Theorem 7.6, we have

U0[h0] ≤ U0[g0] ≤
n∑

i=1

ciµ(Pi).

In this case, (7.25) holds.
(2) Otherwise, for some Pi,

f ≻Pi ca for all a ∈ X. (7.26)

We show that, in this case, f can be modified to some f ′ so that
1. for each Pi, there is some bi ∈ X such that cbi ≿Pi f

′,
2. there exists some gamble h0 such that f ≿ f ′ ≿ h0, and
3. u(f ′(s)) ≤ ci for all s ∈ Pi.
If such a f ′ exists, this will take us back to case (1) for which (7.25) holds,
then we are done. To this end, let x∗, x∗ ∈ X be such that x∗ ≻ x∗ and
u(x∗) < ci (the existence of such a pair is guarantee by SVG 5 and the fact
utility is unique up to some linear transformation). Fix any a ∈ X, then, by
SVG 6, f ≻Pi ca implies that that there is some non-null A ⊆ Pi such that

cx∗ ⊕A f ≻Pi ca,

cx∗ ⊕A f ≻Pi ca.
(7.27)

It is clear, by SVG 2, that

cx∗ ⊕A f ≻Pi cx∗ ⊕A f. (7.28)

Note that (7.26) implies, via SVG 7, that f ≻Pi cx∗ ⊕A f and f ≻Pi cx∗ ⊕A f .
Further, it cannot be the case that cx∗ ⊕A f ≻Pi cb for all b ∈ X, for,
otherwise, by Lemma 7.9, f ∼Pi cx∗ ⊕A f , and hence cx∗ ⊕A f ≻Pi cx∗ ⊕A f ,
which contradicts (7.28). This means that there is some bi ∈ X such that
cbi ≿Pi f ∼Pi cx∗ ⊕A f . Let f ′ = cx∗ ⊕A f , then this is what we need. □
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Theorem 7.13 (Savage). If ≿ satisfies SVG 1-7 then there exists a utility
function u on X and and probability function µ on events such that for any
f, g ∈ A,

f ≿ g ⇐⇒
∫

u
[
f(s)

]
dµ ≥

∫
u
[
f(s)

]
dµ. (7.29)

Proof. We prove the theorem in following steps:

(1) Under the derived utility u on X and µ on F from Theorem 7.6, we define
the utility U of a general act f by14

U [f ] =

∫
u
[
f
]
dµ = sup

∑
i

[
inf
s∈Pi

u[f(s)]
]
µ(Pi), (7.30)

where sup ranges over all possible finite partitions Pi of S intro F-sets. The
goal is then to show that such a utility U exists under SVG 1-7.

(2) Given any general act f ∈ A, we consider the following possibilities:
(a) ca ≿ f ≿ cb for some a, b ∈ X;
(b) f ≻ ca for all a ∈ X;
(c) ca ≻ f for all a ∈ X.
For case (a), partition S into {Pi}ni=1 and let Pi’s be so arranged that, for
any s ∈ Pi (i = 1, . . . , n),

c∗ +
i− 1

n
(c∗ − c∗) ≤ u[f(s)] ≤ c∗ +

i

n
(c∗ − c∗). (7.31)

where c∗ and c∗ are respectively the greatest lower and least upper bounds
of u.15 Then from the definition of U in (7.30), it is easily seen that
n∑

i=1

[
c∗ +

i− 1

n
(c∗ − c∗)

]
µ(Pi) ≤ U [f ] ≤

n∑
i=1

[
c∗ +

i

n
(c∗ − c∗)

]
µ(Pi). (7.32)

On the other hand, by Corollary 7.7, there exists some g0 such that g0 ∼ f .
Then from (7.32) we conclude via Lemma 7.11 (and an apparent symmetric
argument) that
n∑

i=1

[
c∗ +

i− 1

n
(c∗ − c∗)

]
µ(Pi) ≤ U0[g0] ≤

n∑
i=1

[
c∗ +

i

n
(c∗ − c∗)

]
µ(Pi). (7.33)

Then (7.32) and (7.33) lead to

U [f ] = U0[g0] as n → ∞. (7.34)

If (b) is the case, then by Lemma 7.9, all acts that satisfy (b) are equally
preferable. In this case, it is easy to show that U [f ] = c∗. And similarly, for
case (c), it can be shown that U [f ] = c∗.

14Cf. Section A6.
15Theorem 1 on page 79 of Savage (1972) was proved under the assumption that both f, g are
bounded. In fact, Theorem 14.5 of Fishburn (1970, p. 206) shows that the utility function u
derived in Theorem 7.6 is bounded under SVG 1-7. See the footnote on page 80 in Savage
(1972).
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(3) Finally, observe that (7.29) holds if we consider a combination of cases where
f and g are in situations (a)-(c) above. □





APPENDIX A

More Mathematical Details

Gathered here are some of the definitions and results used or re-
ferred to in the main texts. They deliver some more details that
complement discussions above. References of the sources are given
from time to time, but all mistakes are mine.

A1. Binary relations. Let X be a nonempty set, a binary relation R on
X is a set of ordered pairs of elements of X. Following a notational convention,
we sometimes write (x, y) ∈ R in the form of xRy. The following is a list of
properties of R: for any x, y, z ∈ X,
reflexivity: xRx

irreflexivity: ¬xRx

symmetry: xRy ⇒ yRx

asymmetry: xRy ⇒ ¬yRx

antisymmetry: (xRy ∧ xRy) ⇒ x = y

transitivity: (xRy ∧ yRz) ⇒ xRz

negatively transitivity: (¬xRz ∧ ¬zRy) ⇒ ¬xRy or xRy ⇒ (xRz ∨ zRy)

completeness: xRy or yRx.

Definition A1.1. Let R be a binary relation on X, R is
(1) a preorder if it is reflexive and transitive;
(2) a weak order (or total order) if it a complete preorder;
(3) a partial order if it is an antisymmetric preorder;
(4) a linear order if it is a complete partial order.

For any given preorder ≿, by the symmetric part of ≿, denoted by ∼, we
mean ∼=

{
(x, y) ∈≿

∣∣x ≿ y and y ≿ x
}

, and by the asymmetric part (i.e., the
strict part) of ≿, denoted by ≻, we mean ≻=

{
(x, y) ∈≿

∣∣x ≿ y and y ̸≿ x
}

.

Definition A1.2. A preordered set is a structure (X,≿) where X is a
nonempty set and ≿ is a preorder on X. A preordered set is said to be a
poset (X,⪰) if ⪰ is a partial order on X; it is a loset (X,≥) if ≥ is a linear order
on X.

A binary relation E on X is said to be an equivalence relation if it is reflexive,
symmetric and transitive. For any x ∈ X, the equivalence class of x with respect
to E is the set

[x]E = {ν ∈ X | xEν}.
55
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The collection of all equivalence classes of X with respect to E, denoted by X/E

is the quotient set of X with respect to E, that is, X/E =
{
[x]E | x ∈ X

}
. It

is plain that, for any given preorder set (X,≿), ≿ induces a partial order ⪰ on
the quotient set X/∼ of X such that

[x]∼ ≻ [y]∼ if and only if x ≻ y

[x]∼ = [y]∼ if and only if x ∼ y.

Definition A1.3. Let (X,≿) be a preordered set, any x, y of X are said to
be ≿-comparable if either x ≿ y or y ≿ x, and they are ≿-incomparable if they
are not ≿-comparable, that is, if x ̸≿ y and y ̸≿ x, denoted by x ▷◁ y (some
writers also use ‘x ∥ y’ for incomparability).

A2. Non-measurable sets. The following example is due to Vitali (1905).
It shows that there exist sets of real numbers that are not Lebesgue measurable.

Example A2.1 (Vitali). Define an equivalence relation ∼ on R by:

x ∼ y if and only if x− y ∈ Q.

By the Axiom of Choice, there exists a set V of representatives from each equiv-
alent class. Now consider the set {V +r | r ∈ Q}, it has following two properties:

(1) For any distinct rational numbers r1, r2,

V + r1 ∩ V + r2 = ∅.

(Otherwise, V + r1 and V + r2 share some point h1+ r1 = h2+ r2, then
h1 ∼ h2. Since h1, h2 are representatives it follows h1 = h2, and hence
r1 = r2, a contradiction.)

(2) For any x ∈ R, x ∈ V + r for some r ∈ Q, that is,

R =
∪

{V + r | r ∈ Q}. (A2.1)

(For, x must lie in some equivalence class with a representative, say, h.
Then, by definition, x− h = r′ for some r′ ∈ Q, hence x ∈ V + r′.)

We show that it cannot be the case that V ∈ B. Note that if V ∈ B then it
must be that µ(V ) > 0. For, otherwise, µ(V ) = 0, then µ(V + r) = 0 for all
r ∈ Q, since µ is translation-invariant. But, by (A2.1) and countable additivity,

µ(R) = µ
(∪

{V + r | r ∈ Q}
)
=
∑
r∈Q

µ(V + r) = 0

which is impossible. Further, if µ(V ) > 0 then there must be some (a, b] for
which µ(V ∩ (a, b]) = c for some c > 0. Again, by translation-invariance,

µ
(
V ∩ (a, b]

)
= µ

(
V ∩ (a, b] + r

)
= c for all r ∈ Q. (A2.2)

On the other hand, consider all the rationals in [0, 1], we have∪
r∈Q∩[0,1]

(V ∩ (a, b]) + r ⊆ (a, b+ 1].
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It follows that ∑
r∈Q∩[0,1]

µ
(
V ∩ (a, b] + r

)
≤ µ(a, b+ 1] = b+ 1− a. (A2.3)

However, by (A2.2), the left hand of (A2.3) is the sum of countable many c’s
which add to +∞, a contradiction. �

A3. Szpilrajn extension theorem. The following result is due to Szpil-
rajn (1930). It shows that every partial ordering can be extended to a linear
ordering.

Theorem A3.1. Let ≻ be a strict partial order on a set X. Then there
exists a strict total order > on X that extends ≻.

Proof. Let P be the set of all the strict partial orders on X that extend
≻. Then it is plain that P is partially ordered under ⊆. Let C be any chain in
the poset (P,⊆), then

∪
C is an upper bound of C. To see this, we show that∪

C is irreflexive and transitive, and hence
∪
C ∈ P. Suppose, to the contrary,

that there is an x ∈ X such that (x, x) ∈
∪
C, this implies that there exists

some C ∈ C for which (x, x) ∈ C, which contradicts the assumption that C is
a strict partial order. As for transitivity, suppose that (x, y), (y, z) ∈

∪
C, then

there exist C1, C2 ∈ C such that (x, y) ∈ C1 and (y, z) ∈ C2. Since C is totally
ordered under ⊆, assume, without loss of generality, that C1 ⊆ C2, we get that
(x, z) ∈ C2, and hence (x, z) ∈ C.

By Zorn’s lemma, P contains a maximal element P , that is, for any P ∈ P,
P ⊆ P implies that P = P . We claim that P must be a complete relation on X.
For, otherwise, there exist some x, y ∈ X such that neither xPy nor yPx hold.
In this case, define P

′
= P ∪ A where A = {x} ∪ {z | zPx} × {y} ∪ {z | yPz}.

Then it is clear that P
′ is a strict partial order on X that properly extends P ,

which contradicts the maximality of P . Thus, P is irreflexive, transitive, and
complete. Finally, denote P by >, we have that > is a strict total order that
extends ≻. □

A4. Existence of uniform distribution over natural numbers. A uni-
formly distributed probabilistic measure on natural numbers N is of particular
interest because (1) it serves a good purpose of delineating the difference between
finite additivity and countable additivity; (2) its use is often tied to the notion
of randomness: it amounts to saying that choose a number “at random.” The
latter is commonly understood in the following relative frequentist interpretation
of uniformity of natural numbers.

A41. Density function. Let A be any subset of N. For each number n < ∞,
denote the number of elements in A that are less or equal to n by A(n), that is,

A(n) =
∣∣A ∩ {1, . . . , n}

∣∣. (A4.1)
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Define the density of A by the limit (if exists)

d(A) = lim
n→∞

A(n)

n
. (A4.2)

Let Cd be the collection of all sets of natural numbers that have densities. The
following properties of the density function are easy to verify.

Proposition A4.1. (1) d(∅) = 0 and d(N) = 1.
(2) For each natural number n, d({n}) = 0.
(3) For any finite A ∈ Cd, d(A) = 0.
(4) If A,B,A ∪B ∈ Cd and A ∩B = ∅, then d(A ∪B) = d(A) + d(B).
(5) If A ∈ Cd, then, for any number n, A + n ∈ Cd and d(A) = d(A + n),

where A+ n = {x+ n | x ∈ A}.
(6) The set of even numbers has density 1/2, or more generally, the set of

numbers that are divisible by m < ∞ has density 1/m.

Notice that d is not defined for all subsets of N (Cd is not a field of natural
numbers). We hence seek to extend d to a finitely additive probability measure
µ so that µ is defined for all subsets of the natural numbers and that µ agrees
with d on Cd (Theorem A4.6 below). One version of the extension theorem has
been given by Rao and Rao (1983, Theorem 3.2.10).1 The set-theoretic approach
explicated in the next subsection is adapted from Hrbacek and Jech (1999, Ch.
11). We include this construction for completion, readers may proceed directly
to Example A4.7 below without losing much on the flow of the main argument.

A42. Filter and ultrafilter. A filter on a nonempty set S is a collection F of
subsets of S such that

(1) S ∈ F and ∅ /∈ F ,
(2) if X,Y ∈ F , then X ∩ Y ∈ F ,
(3) if X,Y ⊆ S and X ∈ F , then Y ∈ F .

Example A4.2. (1) A trivial filter F = {S}.
(2) Let A ⊆ S, a principal filter generate by A is the collection {X ⊆

S|A ⊆ X}. In the case of natural numbers where S = N, a principal
filter generated by n0 < ∞ is the collection Fn0 of sets of numbers such
that X ∈ Fn0 if and only if n0 ∈ X.

(3) As for an example of a nonprinciple filter, let S an infinite set, the
Fréchet filter on S is the collection

F = {X ⊆ S | S −X is finite}. (A4.3)

That is, F is the filter of all cofinite subsets of S. �

A filter U is said to be an ultrafilter if, for each X ⊆ S, either X ∈ U or
S −X ∈ U . The following extension theorem (due to Tarski, 1930) is crucial to
1Kadane and O’Hagan (1995, Theorem 1) show that the monotonicity condition given by Rao
and Rao (1983) in their extension theorem is also necessary, see also Schirokauer and Kadane
(2007).
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our construction of an finitely additive probability measure on P(N). The proof
uses Zorn’s lemma and is widely available (see, for instance, Jech, 2003, §7).

Theorem A4.3 (Tarski). Every filter can be extended to an ultrafilter.

Recall that our main concern in the last subsection is that the density func-
tion d(·) is not defined for all the subset of natural numbers, in other words, there
exists some A ⊆ N such that the sequence {A(n)/n}∞n=1 does not converge. The
goal is to extend d to some measure so that (A4.2) holds for all A’s. To this
end, we define a general notion of convergence in an ultrafilter, which has the
property that, given an ultrafilter of natural numbers, every bounded sequences
converges. As we shall see, this leads to the extension of d to P(N) as required.

Definition A4.4. Let {an}∞n=1 be a bounded sequence of real numbers and
let U be an ultrafilter on N. For some a ∈ R, {an}∞n=1 is said to be convergent
in U to a (or a is a U-limit of the sequence), written a = limU an, if for every
small ϵ > 0, {

n
∣∣ |an − a| < ϵ

}
∈ U . (A4.4)

Lemma A4.5. Let U be an ultrafilter on N, then, for any bounded real
sequence {an}, there exists a unique U-limit.

Proof. Since {an} is bounded, for every x < ∞, let

Ax = {n | an < x}.

Further, let
a = sup{x | Ax /∈ U}.

We show that limU an = a, that is, we show that, for any ϵ > 0, (A4.4) holds.
Note that, for any x < y, Ax ⊆ Ay, hence if Ax ∈ U then Ay ∈ U . Since a is the
least upper bound of x for which Ax /∈ U , we have Aa+ϵ ∈ U but Aa−ϵ/2 /∈ U .
Given that U is an ultrafilter, the latter implies that S −Aa−ϵ/2 ∈ U , that is,

S −Aa−2ϵ =
{
n
∣∣∣ a− ϵ

2
≤ an

}
∈ U .

Since Aa+ϵ = {n | an < a + ϵ} ∈ U and {n | a − ϵ/2 ≤ an} ⊆ {n | a − ϵ < an},
we have that

{
n
∣∣ |an − a| < ϵ

}
= {n | an < a + ϵ} ∩ {n | a − ϵ < an} ∈ U , and

hence (A4.4). To show uniqueness, note that if there is some b ̸= a such that
b = limU an. Let ϵ = |a− b|, then, by (A4.4), both A = {n | |an − a| < ϵ/2} and
B = {n | |an − b| < ϵ/2} are in U . Clearly, A ∩ B = ∅, and hence B ⊆ S − A.
But this implies, from B ∈ U and the fact that U is an ultrafilter, that S −A is
also in U , which is impossible. □

Theorem A4.6. There exists a finitely additive probability measure on all
subsets of N that extends the density function d.

Proof. Let U be a Fréchet ultrafilter on N (the existence of U is guaranteed
by Example A4.2 (3) and Theorem A4.3). Define a measure µ on P(N) to be
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such that
µ(A) = lim

U

A(n)

n
, (A4.5)

where A(n) is defined as in (A4.1). By Lemma A4.5, µ is well defined for all
A ∈ P(N). Note that, for any A, if d(A) exists, say d(A) = a, then a = µ(A).
For, by definition, if for any small ϵ there exists some N such that, for all n > N ,
|A(n)/n− a| < ϵ, then, given that U is the ultrafilter of all cofinite subsets of N,
it follows that

{
n
∣∣ |A(n)/n− a| < ϵ

}
∈ U , and hence µ(A) = a.

It remains to show that µ is indeed a finitely additive probability measure.
Clearly, µ(∅) = 0 and µ(N) = 1. We show µ is finitely additive. To this end, let
A,B be any disjoint subsets of N. By (A4.5) and the fact that A ∩B = ∅,

µ(A ∪B) = lim
U

(
A ∪B

)
(n)

n

= lim
U

A(n) +B(n)

n

= lim
U

A(n)

n
+ lim

U

B(n)

n
= µ(A) + µ(B).

(Actually, it can also be easily seen that µ is also translation-invariant.) There-
fore, µ is a measure defined for all subsets of N that extends the density function
d. □

The following is a classical example of finitely but not countably additive
probability measure on the natural numbers which is a simple form of the density
function d introduced above.

Example A4.7. Let {λn} be a sequence of functions defined on N such that2

λn(i) =

1/n if 1 ≤ i ≤ n,

0 if i > n.
(A4.6)

Clearly, each λn(i) takes the form of A(n)/n in (A4.2) where A = {i}, and
{λn} converges point-wisely to the density function d (on singletons). By The-
orem A4.6, there exists a function λ defined for all subsets of N that extends d.
Further, by Proposition A4.1, λ satisfies the following properties:

(1) λ is defined for all subsets of N.
(2) λ(∅) = 0 and λ(N) = 1.
(3) λ is finitely additive.
(4) λ is not countably additive.
(5) For any i < ∞, λ

(
{i}
)
= 0.

(6) For any A ⊆ N, if A is finite then λ(A) = 0; if A is cofinite (i.e. if N−A

if finite) then λ(A) = 1.
(7) λ({2n | n ∈ N}) = 1/2, i.e., the set of even numbers has measure 1/2.
(8) In general, the set of numbers that are divisible by m < ∞ has measure

1/m, that is, λ({1m, 2m, 3m, . . .}) = 1/m. As a result of this property,
2Dubins and Savage (1965) call probability measure of this type diffuse.
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we have that the assignment of µ can be arbitrarily small: for any λ > 0,
there exists some n such that the set of numbers that are divisible by
n has measure 1/n < ϵ. �

A5. Convergences. Let {fn}, f be measurable functions on the measure
space (Ω,F , µ),

(1) fn is said to converges point-wisely to f , in symbols fn → f , if

lim
n→∞

fn(ω) = f(ω), for all ω ∈ Ω. (A5.1)

(2) fn is said to converges uniformly to f if, for any ϵ > 0, there is some
large N such that∣∣∣fn(ω)− f(ω)

∣∣∣ < ϵ, for all ω ∈ Ω, n ≥ N. (A5.2)

(3) fn is said to converge to f almost everywhere (a.e.) if there exists a
measurable set E ⊆ Ω satisfying

µ(E) = 0 and lim
n

fn(ω) = f(ω) for all ω ∈ Ω− E. (A5.3)

(4) fn is said to converge to f in measure if

lim
n→∞

µ
[
|fn − f | ≥ ϵ

]
= 0 for all ϵ > 0. (A5.4)

Lemma A5.1. Given any finitely additive measure µ on measurable space
(Ω,F), if fn converges to 0 almost everywhere implies that fn converges to 0 in
measure, then the measure is also countably additive.

Proof. Assume that {Bi} is any sequence of pairwise disjoint sets in the
measurable space, define

B =
∪
i

Bi =
∪
i≤n

Bi ∪
∪
i>n

Bi

Let An =
∪

i>nBi, hence An ↓ ∅. We show that µ(An) → 0 as n → ∞. To this
end, let χAn be the characteristic function of An, it is plain that µ(An) → 0 if
and only if χAn → 0 in measure. By assumption, it is enough to ask χAn → 0

a.e. but this follows trivially from the fact that
∩
An = ∅. Next, note that, by

finite additivity,

µ(An) = µ
(
B −

∪
i≤n

Bi

)
= µ

(
B
)
−

n∑
i=1

µ(Bi)

Hence, from µ(An) → 0, we get µ
(
B
)
=
∑∞

i=1 µ(Bi). This shows countable
additivity. □

A6. Expectations. Let {fn}, {gn} f, g be real-valued measurable functions
on the measure space (Ω,F , µ). f is said to be simple if there n-many distinct
values c1, . . . , cn and a partition {Pi}ni=1 of Ω such that f(x) = ci for all x ∈ Pi
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(i = 1, . . . , n). Define the expectation of f with respect to µ to be

E(f, µ) =

n∑
i=1

ciµ(Pi). (A6.1)

Definition A6.1 (Expection). If f is bounded and {fn} is a sequence of
simple measurable functions converges uniformly to f then

E(f, µ) = sup
{
E(fn, µ) : n = 1, 2, . . .

}
. (A6.2)

It can be shown that the above definition does not depend on the selection of
the sequences of simple functions converging to f . As shown below, any bounded
measurable function f can be approximated by a particular sequence of simple
functions, and hence in (A6.2) we can use this sequence of simple functions to
calculate the expectation of f through (A6.1). Suppose that c∗ ≤ f ≤ c∗, for
each n < ∞, define a n-partition {Pi}ni=1 of Ω to be such that

Pi =
{
x
∣∣∣ c∗ + (i− 1)(c∗ − c∗)

n
≤ f(x) ≤ c∗ +

i(c∗ − c∗)

n

}
, (A6.3)

and define fn by

fn(x) = c∗ +
(i− 1)(c∗ − c∗)

n
for all x ∈ Pi. (A6.4)

For each n, fn is a simple function by definition, then we have that for all x ∈ Ω,

|f(x)− fn(x)| ≤
c∗ − c∗

n
. (A6.5)

Hence {fn} uniformly convergences to f , in which case we have

E(f, µ) = sup
{ n∑

i=1

[
inf
x∈Pi

f(x)
]
µ(Pi) : n = 1, 2, . . .

}
. (A6.6)

Note that the requirement of uniform convergence is crucial for those measure
spaces with mere finitely additive probabilities. The following is the example
commonly used in the literature to illustrate this point.

Example A6.2. Let Ω = {0, 1, 2, . . .} and λ be a diffuse (Example A4.7)
defined on (Ω,F) and f(x) = x/(1 + x) for all x ∈ Ω. Using the construction
from (A6.3) to (A6.6), we can define a sequences {fn} of functions uniformly
converging to f such that

fn(x) =
i− 1

n
for all x ∈ Pi =

{
x
∣∣∣ i− 1

n
≤ f(x) ≤ i

n

}
(i = 1, . . . , n).

Since, for each i < n, Pi is finite and hence λ(Pi) = 0, then we have

E(f, λ) = lim
n→∞

n∑
i=1

i− 1

n
λ(Pi)

= lim
n→∞

[ n−1∑
i=1

i− 1

n
λ(Pi) +

n− 1

n
λ(Pn)

]
= lim

n→∞

n− 1

n
= 1.
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Now consider another sequence gn of functions constructed as follows. Let Qi

be a n− 1-partition of Ω such that

Q1 =
{
x
∣∣∣ 0 ≤ f(x) ≤ 1

n

}
∪
{
x
∣∣∣ n− 1

n
≤ f(x) ≤ 1

}
Qi =

{
x
∣∣∣ i− 1

n
≤ f(x) ≤ i

n

}
(i = 2, . . . , n− 1).

Define gn by

gn(x) = inf
{
f(y)

∣∣∣ y ∈ Qi

}
for all x ∈ Qi(i = 1, . . . , n− 1).

We have that, for each n, gn is a simple function and E(gn, λ) ≡ 0, and
sup{E(gn, λ) : n = 1, 2, . . .} = 0 ̸= E(f, λ) = 1. Note that the difference
between {fn} and {gn} is that the latter does not converge uniformly to f . �

A7. Gambler’s Ruin and Countable Additivity. The story we are
about to tell points to one important source of the countable additivity condition
for probability measures. The issue is closely related to the modern philosoph-
ical debate about finite versus countable additivity. As we shall see, countable
additivity is needed even at very early stage of the development of probability
theory.

The Gambler’s Ruin. The original Gambler’s Ruin is the problem posed
by Pascal to Fermat through a letter from Carcavi to Huygens on 28 September
1656 (cf. Hald, 2003, p. 76). The problem goes like this: A and B are playing
a game which involves the rolling of three fair dice. Each player is given 12
counters as his initial capital. The rule of the game is that if 11 points are
shown, A gives a counter to B and if 14 points are shown, B gives a counter to
A, then whoever first collects all the counters wins the game. The question is
which one of the two players is more prone to win the game.3

Solution. Let us modernize the story: suppose that a gambler enters a game
with capital a and adopts the strategy of continuing to bet at unit stakes with
chance p of winning each bet (and chance q = 1 − p of losing a bet) until his
fortune increases to c or his funds are exhausted. Then the question is what is
the probability of his achieving goal?

Let X1, X2, . . . , Xn, . . . be a sequence of random variables taking on +1 or
−1 as values with probabilities Pr[Xn = +1] = p and Pr[Xn = −1] = q. Define

S0 = 0;

Sn = X1 + · · ·+Xn.

Intuitively, Sn counts the wins of the gambler in the first n bets, and his fortune
after the n’s bet is a + Sn. The event that the gambler achieved his goal after

3The mathematial detail below is pulled mainly from Billingsley (2012, §2 and §7).
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n’s round of betting can be described as

Aa,n =
[
a+ Sn = c

]
∩

n−1∩
k=1

[
0 < a+ Sk < c

]
, (A7.1)

where
[
0 < a + Sn < c

]
represent the set of sequences of rolling such that the

gambler’s goal is not reached in the first k tries. It is easy to see that m ̸= n

implies Aa,n ∩Aa,m = ∅. Then the probability of the gambler winning the game
with capital a and goal c, denoted by sc(a), is

sc(a) =

∞∑
n=1

Pr(Aa,n) = Pr
( ∞∪

n=1

Aa,n

)
;

sc(0) = 0, sc(a) = 1.

(A7.2)

Now apply Huyens’ idea of shifting the betting sequence one step to the right,
that is, from X1, X2, . . . to X2, X3, . . .. Then, the initial game is equivalent to a
game where the gambler has either probability p to start betting with a capital
of a+1 or probability q with capital a−1. This generates the following recursive
function,

sc(a) = psc(a+ 1) + qsc(a− 1). (A7.3)
Assuming 0 ≤ a ≤ c, let r = q/p, then the above equation can be solved as4

sc(a) =

 ra−1
rc−1 if r ̸= 1

a/c if r = 1
. (A7.4)

Note. The construction above involves
(1) infinite sequences of observable results: in (A7.1), Aa,n (as n → ∞) is

the set of infinite sequence of rollings;
(2) countably additivity probability: in (A7.2), the probability of winning

the game with initial capital a and goal c is the sum of probabilities of
winning the game after n rollings (n = 1, 2, . . .).

Hence the solution in (A7.4) is justifiable only if it can be shown the the un-
derlying probability measure is (1) definable for infinite sequences and (2) is
countable additive, to which we now turn.

Sequence space. Let S be a (finite) set of possible outcomes and ρ be
a (simple) probability function defined on S. In the example above, S =

{1, 2, 3, 4, 5, 6} and ρ(i) = 1/6, for all i ∈ S. Let Ω = S∞ and, for any ω ∈ Ω, let
zk(ω) : S

∞ → S be the kth coordinate projection function for all k ≥ 1. Define
a cylinder of rank n to be a set of the form

A = [ω :
(
z1(ω), . . . , zn(ω)

)
∈ H],

where H ⊆ Sn. Let C0 be the class of cylinders of all ranks, then it is easy to
verify that C0 is a field. The goal is to define a probability measure on measurable

4See also DeGroot and Schervish (2012, p.87).
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space (Ω,C0). Now consider the following set function Pr(·) on C0 defined by

Pr(A) =
∑
H

ρ
(
z1(ω)

)
× · · · × ρ

(
zn(ω)

)
. (A7.5)

We show that Pr is a well defined probability measure on (Ω,C0). For this, we
only show that Pr(·) is finitely additive: let A be as above and

B = [ω :
(
z1(ω), . . . , zm(ω)

)
∈ I]

for some I ⊆ Sm. WLOG, assume that n ≤ m, then let H ′ ⊆ Sm be such that,
for each ω ∈ Ω, (z1(ω), . . . , zn(ω), . . . , zm(ω)

)
∈ H ′ iff (z1(ω), . . . , zn(ω)

)
∈ H,

and hence
A = [ω :

(
z1(ω), . . . , zm(ω)

)
∈ H ′]

Now suppose that A ∩B = ∅, then by (A7.5)

Pr(A ∪B) =
∑
H′∪I

ρ
(
z1(ω)

)
· · · ρ

(
zm(ω)

)
=
∑
H′

ρ
(
z1(ω)

)
· · · ρ

(
zm(ω)

)
+
∑
I

ρ
(
z1(ω)

)
· · · ρ

(
zm(ω)

)
= Pr(A) + Pr(B).

Pr(·) is referred to as a (finitely additive) product measure on (Ω,C0). We point
out that Pr is at the same time countably additive. To this end, we first turn to
the following observations

Lemma A7.1. If Pr(·) is a finitely additive probability measure on the field
F , and if An ↓ ∅ for sets An in F implies Pr(An) ↓ 0, then Pr(·) is countably
additive.

Proof. Assume that {Bn} is a sequence of pairwise disjoint sets in F , define

B =
∪
i

Bi =
∪
i≤n

Bi ∪
∪
i>n

Bi

Let An =
∪

i>nBi, then An ↓ ∅ as n → ∞. Note that, by finite additivity,

Pr(An) = Pr
(
B −

∪
i≤n

Bi

)
= Pr

(
B
)
−

n∑
i=1

Pr(Bi)

Hence, from Pr(An) → 0, we get Pr
(
B
)
=
∑∞

i=1 Pr(Bi). □

Lemma A7.2. If An ↓ A, where An are nonempty cylinders, then A ̸= ∅.

Proof. See Billingsley (2012, p. 30) □

Theorem A7.3. Every finitely additive product measure on C0 is countably
additive.

Proof. Assume, to the contrary, that Pr(·) is not countably additive, then
apply Lemma A7.1: there is some sequence {An} in C0 such that An ↓ ∅ and
Pr(An) does not converge to 0, that is, there is some ϵ > 0 for which Pr(An) > ϵ
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as n → ∞. This implies, by Lemma A7.2, ∅ = A =
∩

nAn ̸= ∅, which is
absurd. □
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